10,077 research outputs found

    A saturated red color converter for visible light communication using a blend of star-shaped organic semiconductors

    Get PDF
    Authors would like to acknowledge the EPSRC for financial support for the UP-VLC (EP/K00042X/1). PJS and IDWS also acknowledge Royal Society Wolfson Research Merit Awards.We report a study of blends of semiconducting polymers as saturated red color converters to replace commercial phosphors in hybrid LEDs for visible light communication (VLC). By blending two star-shaped organic semiconductor molecules, we found a near complete energy transfer (> 90% efficiency) from the green-emitting truxene-cored compound T4BT-B to the red-emitting boron dipyrromethene (BODIPY) cored materials. Furthermore, we have demonstrated the capability of these materials as fast color converters for VLC by measuring their intrinsic optical modulation bandwidth and data rate. The measured 3 dB modulation bandwidth of blends (~55 MHz) is more than 10 times higher than commercially available LED phosphors and also higher than the red-emitting BODIPY color converter alone in solution. The data rate achieved with this blend is 20 times higher than measured with a commercially available phosphor based color converter.PostprintPeer reviewe

    Polymer colour converter with very high modulation bandwidth for visible light communications

    Get PDF
    We thank EPSRC for financial support from the UP-VLC Project Grant (EP/K00042X/1). I.D.W.S. and P.J.S. are Royal Society Wolfson Research Merit Award holders.For white light data communications, broad-band light emitting materials are required, whose emission can be rapidly modulated in intensity. We report the synthesis, photophysics and application of a novel semiconducting polymer for use as a high bandwidth colour converter, to replace commercial phosphors in white LEDs. The high modulation bandwidth (470 MHz) is 140 times higher than that measured using a conventional LED phosphor.Publisher PDFPeer reviewe

    N=4 Superconformal Algebra and the Entropy of HyperKahler Manifolds

    Full text link
    We study the elliptic genera of hyperKahler manifolds using the representation theory of N=4 superconformal algebra. We consider the decomposition of the elliptic genera in terms of N=4 irreducible characters, and derive the rate of increase of the multiplicities of half-BPS representations making use of Rademacher expansion. Exponential increase of the multiplicity suggests that we can associate the notion of an entropy to the geometry of hyperKahler manifolds. In the case of symmetric products of K3 surfaces our entropy agrees with the black hole entropy of D5-D1 system.Comment: 25 pages, 1 figur

    R^2 Corrections to Asymptotically Lifshitz Spacetimes

    Full text link
    We study R2R^{2} corrections to five-dimensional asymptotically Lifshitz spacetimes by adding Gauss-Bonnet terms in the effective action. For the zero-temperature backgrounds we obtain exact solutions in both pure Gauss-Bonnet gravity and Gauss-Bonnet gravity with non-trivial matter. The dynamical exponent undergoes finite renormalization in the latter case. For the finite-temperature backgrounds we obtain black brane solutions perturbatively and calculate the ratio of shear viscosity to entropy density η/s\eta/s. The KSS bound is still violated but unlike the relativistic counterparts, the causality of the boundary field theory cannot be taken as a constraint.Comment: 24 pages, Latex, typos fixed, accepted by JHE

    Attachment styles and personal growth following romantic breakups: The mediating roles of distress, rumination, and tendency to rebound

    Get PDF
    © 2013 Marshall et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.The purpose of this research was to examine the associations of attachment anxiety and avoidance with personal growth following relationship dissolution, and to test breakup distress, rumination, and tendency to rebound with new partners as mediators of these associations. Study 1 (N = 411) and Study 2 (N = 465) measured attachment style, breakup distress, and personal growth; Study 2 additionally measured ruminative reflection, brooding, and proclivity to rebound with new partners. Structural equation modelling revealed in both studies that anxiety was indirectly associated with greater personal growth through heightened breakup distress, whereas avoidance was indirectly associated with lower personal growth through inhibited breakup distress. Study 2 further showed that the positive association of breakup distress with personal growth was accounted for by enhanced reflection and brooding, and that anxious individuals’ greater personal growth was also explained by their proclivity to rebound. These findings suggest that anxious individuals’ hyperactivated breakup distress may act as a catalyst for personal growth by promoting the cognitive processing of breakup-related thoughts and emotions, whereas avoidant individuals’ deactivated distress may inhibit personal growth by suppressing this cognitive work

    Aging-associated renal disease in mice is fructokinase dependent

    Get PDF
    Aging-associated kidney disease is usually considered a degenerative process associated with aging. Recently, it has been shown that animals can produce fructose endogenously, and that this can be a mechanism for causing kidney damage in diabetic nephropathy and in association with recurrent dehydration. We therefore hypothesized that low-level metabolism of endogenous fructose might play a role in aging-associated kidney disease. Wild-type and fructokinase knockout mice were fed a normal diet for 2 yr that had minimal (<5%) fructose content. At the end of 2 yr, wild-type mice showed elevations in systolic blood pressure, mild albuminuria, and glomerular changes with mesangial matrix expansion, variable mesangiolysis, and segmental thrombi. The renal injury was amplified by provision of high-salt diet for 3 wk, as noted by the presence of glomerular hypertrophy, mesangial matrix expansion, and alpha smooth muscle actin expression, and with segmental thrombi. Fructokinase knockout mice were protected from renal injury both at baseline and after high salt intake (3 wk) compared with wild-type mice. This was associated with higher levels of active (phosphorylated serine 1177) endothelial nitric oxide synthase in their kidneys. These studies suggest that aging-associated renal disease might be due to activation of specific metabolic pathways that could theoretically be targeted therapeutically, and raise the hypothesis that aging-associated renal injury may represent a disease process as opposed to normal age-related degeneration. aging is associated with the development of glomerulosclerosis and tubulointerstitial disease in humans and rodents (12, 23, 35). Interestingly, aging-associated renal injury can vary greatly, and some individuals may show minimal reduction in kidney function and relatively preserved kidney histology with age. This raises the possibility that some of the “normal” deterioration in renal function during the aging process observed in Western cultures may be subtle renal injury driven by diet or other mechanisms. The ingestion of sugar has been associated with albuminuria in humans (3, 4, 31). Sugar contains fructose and glucose, and evidence suggests that the fructose component may be responsible for the renal injury. Specifically, fructose is metabolized in the proximal tubule by fructokinase, and this results in transient ATP depletion with the generation of oxidative stress and inflammatory mediators such as monocyte chemoattractant protein-1 (MCP-1) (5). The administration of fructose to rats results in modest proximal tubular injury, and has also been shown to accelerate preexistent kidney disease (9, 26). Fructose metabolism also results in the generation of uric acid, and this is associated with the development of afferent arteriolar disease with loss of autoregulation, resulting in glomerular hypertension (29, 30). While most studies have focused on dietary fructose, fructose can also be generated in the kidney and liver by the aldose reductase-sorbitol dehydrogenase polyol pathway, and modest fructose levels can be detected even in fasting animals (13, 21). Indeed, fructose can be generated in the kidney in diabetes or with dehydration, and in both situations may lead to local renal damage (20, 28). We hypothesized that some of the renal damage associated with aging could be due to fructose-dependent renal injury, even in the absence of dietary fructose. To investigate this hypothesis, we studied aging wild-type mice and aging mice that could not metabolize fructose via the fructokinase-dependent pathway [fructokinase knockout, also known as ketohexokinase knockout (KHK-A/C KO mice)]. KHK-A/C KO mice have a normal phenotype when young (6), but have not been examined in the aging state

    Information heat engine: converting information to energy by feedback control

    Full text link
    In 1929, Leo Szilard invented a feedback protocol in which a hypothetical intelligence called Maxwell's demon pumps heat from an isothermal environment and transduces it to work. After an intense controversy that lasted over eighty years; it was finally clarified that the demon's role does not contradict the second law of thermodynamics, implying that we can convert information to free energy in principle. Nevertheless, experimental demonstration of this information-to-energy conversion has been elusive. Here, we demonstrate that a nonequilibrium feedback manipulation of a Brownian particle based on information about its location achieves a Szilard-type information-energy conversion. Under real-time feedback control, the particle climbs up a spiral-stairs-like potential exerted by an electric field and obtains free energy larger than the amount of work performed on it. This enables us to verify the generalized Jarzynski equality, or a new fundamental principle of "information-heat engine" which converts information to energy by feedback control.Comment: manuscript including 7 pages and 4 figures and supplementary material including 6 pages and 8 figure

    On Charged Lifshitz Black Holes

    Full text link
    We obtain exact solutions of charged asymptotically Lifshitz black holes in arbitrary (d+2) dimensions, generalizing the four dimensional solution investigated in 0908.2611[hep-th]. We find that both the conventional Hamiltonian approach and the recently proposed method for defining mass in non-relativistic backgrounds do not work for this specific example. Thus the mass of the black hole can only be determined by the first law of thermodynamics. We also obtain perturbative solutions in five-dimensional Gauss-Bonnet gravity. The ratio of shear viscosity over entropy density and the DC conductivity are calculated in the presence of Gauss-Bonnet corrections.Comment: 24 pages, no figures, to appear in JHE

    Relative blocking in posets

    Full text link
    Poset-theoretic generalizations of set-theoretic committee constructions are presented. The structure of the corresponding subposets is described. Sequences of irreducible fractions associated to the principal order ideals of finite bounded posets are considered and those related to the Boolean lattices are explored; it is shown that such sequences inherit all the familiar properties of the Farey sequences.Comment: 29 pages. Corrected version of original publication which is available at http://www.springerlink.com, see Corrigendu
    corecore