14 research outputs found

    Spin-coated Tin-doped NiO thin films for third order nonlinear optical applications

    Get PDF
    A self-made spin-coater was employed to deposit pure and Sn doped nickel oxide thin films on glass substrates. The tin doping impact on the structural, linear and nonlinear optical properties of the spin-coated NiO thin films was studied. The XRD analysis showed that undoped and Sn doped NiO thin films have a cubic structure and are preferentially oriented along the (200) direction. The increase of doping concentration leads to a modification in the values of certain parameters such as the crystallite size and the structural strain as well as affecting the nonlinear optical properties of the doped nickel oxide thin films. The values of the third order nonlinear optical susceptibility, found to be between 2.25 × 10−21 m2/V2 and 3.13 × 10−21 m2/V2, were obtained and analyzed depending on the concentration of the doping

    Comparison of structural, morphological, linear and nonlinear optical properties of NiO thin films elaborated by Spin-Coating and Spray Pyrolysis

    Get PDF
    The paper reports on a comparative study of nickel oxide thin films prepared via two different elaboration methods spin-coating and spray pyrolysis. The structure and the surface topography of the NiO thin films have been studied by X-ray diffraction and the atomic force microscope. The optical properties of the deposited films were characterized with the analysis of the experimentally recorded optical transmittance data in the spectral wavelength range of 300–850 nm, via a JENWAY6715 UV–vis spectrophotometer. To complete the comparison, the third order nonlinear optical susceptibility was determined from the third harmonic generation experiment, which in turn were explored by the rotational Maker fringe technique using the beam of Nd:YAG laser at 1064 nm in picoseconds regime. The present work is aimed to exhibit the influence of the elaboration method on the physical properties through analyzing the obtained experimental results

    Spin-coated nickel doped cadmium sulfide thin films for third harmonic generation applications

    Get PDF
    In the current study, different percentages of Nickel (0%, 2%, 4% and 6%) doped CdS thin films have been deposited on glass substrates by the sol-gel spin-coating technique. Before performing the nonlinear optical studies, the structural, morphological and optical properties were examined as a function of Ni doping concentration through the XRD, SEM, AFM and UV–vis spectrometry, respectively. According to the XRD patterns, all films are polycrystalline and the incorporation of Ni does not change qualitatively the crystalline phase of CdS. The Ni doping affects the surface morphology of the CdS thin films which is indicated by scanning electron microscopy and atomic force microscopy images. The band gap was determined via the equation related to the absorption coefficient. It\u27s deduced that the optical band-gap values increased from 2.35 eV to 2.41 eV depending on Ni content. Though, the nonlinear optical properties were determined based on the measurements of the third harmonic generation (THG) using the rotational Maker fringe technique. The results showed that the third order nonlinear optical susceptibilities oscillate between 5.40 × 10−21 m2/V2 for CdS:Ni (2%) and 4.98 × 10−21 m2/V2 for CdS:Ni (6%) while the pure CdS one falls inward, with a value of 5.09 × 10−21 m2/V2

    Characterization and third harmonic generation calculations of undoped and doped spin-coated multilayered CuO thin films

    No full text
    The paper presents the physical characterizations of undoped and (Sn, Mn, Fe and In) doped Cupric Oxide (CuO) thin films prepared by sol-gel spin-coating process. The first aim of the work is to investigate the relation between the electrical resistivity and the third order nonlinear optical susceptibility of pure deposited CuO films, second is to explore the impact of introducing diverse dopants on the nonlinear optical responses. In this study, we demonstrate that we can control the electrical and also the nonlinear optical properties of the obtained structure using a different number of deposited layers. Moreover, the influence of doping due to variations in the microstructure and morphology is examined and discussed. © 2018 Elsevier Lt
    corecore