342 research outputs found
Dependence of CMI Growth Rates on Electron Velocity Distributions and Perturbation by Solitary Waves
We calculate growth rates and corresponding gains for RX and LO mode
radiation associated with the cyclotron maser instability for parameterized
horseshoe electron velocity distributions. The velocity distribution function
was modeled to closely fit the electron distribution functions observed in the
auroral cavity. We systematically varied the model parameters as well as the
propagation direction to study the dependence of growth rates on model
parameters. The growth rate depends strongly on loss cone opening angle, which
must be less than for significant CMI growth. The growth rate is
sharply peaked for perpendicular radiation (), with a
full-width at half-maximum , in good agreement with observed k-vector
orientations and numerical simulations. The fractional bandwidth varied between
10 and 10, depending most strongly on propagation direction. This
range encompasses nearly all observed fractional AKR burst bandwidths. We find
excellent agreement between the computed RX mode emergent intensities and
observed AKR intensities assuming convective growth length 20-40 km
and group speed 0.15. The only computed LO mode growth rates compatible
observed LO mode radiation levels occurred for number densities more than 100
times the average energetic electron densities measured in auroral cavities.
This implies that LO mode radiation is not produced directly by the CMI
mechanism but more likely results from mode conversion of RX mode radiation. We
find that perturbation of the model velocity distribution by large ion solitary
waves (ion holes) can enhance the growth rate by a factor of 2-4. This will
result in a gain enhancement more than 40 dB depending on the convective growth
length within the structure. Similar enhancements may be caused by EMIC waves.Comment: 21 pages, 11 figures. J. Geophys. Res. 2007 (accepted
Recommended from our members
A diagnosis of the plasma waves responsible for the explosive energy release of substorm onset
During geomagnetic substorms, stored magnetic and plasma thermal energies are explosively converted into plasma kinetic energy. This rapid reconfiguration of Earth’s nightside magnetosphere is manifest in the ionosphere as an auroral display that fills the sky. Progress in understanding of how substorms are initiated is hindered by a lack of quantitative analysis of the single consistent feature of onset; the rapid brightening and structuring of the most equatorward arc in the ionosphere. Here, we exploit state-of-the-art auroral measurements to construct an observational dispersion relation of waves during substorm onset. Further, we use kinetic theory of high-beta plasma to demonstrate that the shear Alfven wave dispersion relation bears remarkable similarity to the auroral dispersion relation. In contrast to prevailing theories of substorm initiation, we demonstrate that auroral beads seen during the majority of substorm onsets are likely the signature of kinetic Alfven waves driven unstable in the high-beta magnetotail
Recommended from our members
The FIELDS Instrument Suite for Solar Probe Plus: Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients.
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products
N-ftaloil-glicin-hidroksamska kiselina kao kelator željeza u serumu štakora
The aim of this study was to investigate the activity of N-phthaloyl-glycine-hydroxamic acid (Phth-Gly-HA) as a new iron chelator in vivo to be used in iron overload diseases. After intraperitoneal application of Phth-Gly-HA to male rats (1 mg kg1 body mass) once a day for seven days, iron serum level decreased by 21%, whereas the iron value dropped by 32% in female rats (1.5 mg kg1 body mass). The results indicate that the tested substance has the ability to bind serum iron by complexation. Besides transferrin iron release, mobilization of ferritin iron is also possibleU cilju pronalaženja novog efikasnog kelatora koji bi mogao poslužiti u liječenju bolesti izazvanih viškom željeza, u ovom je radu ispitano djelovanje N-ftaloil-glicin-hidroksamske kiseline (Phth-Gly-HA) in vivo. Istraživan je utjecaj kelatora na razinu željeza u serumu štakora nakon intraperitonealne primjene vodene otopine Phth-Gly-HA (0,1 mg mL1) jednom dnevno tijekom 7 dana. Kontrolne su životinje primale fiziološku otopinu. Kod mužjaka injektiranje test supstancije (1 mg kg1) uzrokovalo je pad serumskog željeza za 21%. Kod ženki je nakon tretmana (1,5 mg kg1) izmjereno sniženje razine željeza za 35%. Rezultati pokazuju da ispitivana supstanca ima sposobnost kompleksiranja serumskog željeza, pretežno transferinskog, ali da postoji mogućnost mobilizacije željeza i iz feritinskih zaliha
The role of intuition in entrepreneurship and business venturing decisions
Entrepreneurial intuition is the affectively charged recognition and evaluation of a business venturing opportunity arising as a result of involuntary, rapid, non-conscious, associative processing. This article integrates theories of dual-processing and models of the business venturing (opportunity recognition, evaluation, and exploitation) in a model of entrepreneurial intuition, which links intuitive expertise, cognitive style, somatic state, and the affect heuristic with System 2 interventions and the contingencies of the decision environment. Six research propositions are offered with suggestions for how they can be tested. The theoretical and practical implications of entrepreneurial intuition are discussed in terms of the unfolding of a research agenda relating to this important but under-theorized and under-researched construct in work and organizational psychology
Ion-scale Electromagnetic Waves in the Inner Heliosphere
International audienceUnderstanding the physical processes in the solar wind and corona that actively contribute to heating, acceleration, and dissipation is a primary objective of NASA's Parker Solar Probe (PSP) mission. Observations of circularly polarized electromagnetic waves at ion scales suggest that cyclotron resonance and wave-particle interactions are dynamically relevant in the inner heliosphere. A wavelet-based statistical study of circularly polarized events in the first perihelion encounter of PSP demonstrates that transverse electromagnetic waves at ion resonant scales are observed in 30-50% of radial field intervals. Average wave amplitudes of approximately 4 nT are measured, while the mean duration of wave events is on the order of 20 s; however, long-duration wave events can exist without interruption on hour-long timescales. Determination of wave vectors suggests propagation parallel/antiparallel to the mean magnetic field. Though ion-scale waves are preferentially observed during intervals with a radial mean magnetic field, we show that measurement constraints, associated with single spacecraft sampling of quasi-parallel waves superposed with anisotropic turbulence, render the measured coherent ion-wave spectrum unobservable when the mean magnetic field is oblique to the solar wind flow; these results imply that the occurrence of coherent ion-scale waves is not limited to a radial field configuration. The lack of radial scaling of characteristic wave amplitudes and duration suggests that the waves are generated in situ through plasma instabilities. Additionally, observations of proton distribution functions indicate that temperature anisotropy may drive the observed ion-scale
Direct Observations of Oxygen-induced Platinum Nanoparticle Ripening Studied by In Situ TEM
This study addresses the sintering mechanism of Pt nanoparticles dispersed on a planar, amorphous Al2O3 support as a model system for a catalyst for automotive exhaust abatement. By means of in situ transmission electron microscopy (TEM), the model catalyst was monitored during the exposure to 10 mbar air at 650 degrees C. Time-resolved image series unequivocally reveal that the sintering of Pt nanoparticles was mediated by an Ostwald ripening process. A statistical analysis of an ensemble of Pt nanoparticles shows that the particle size distributions change shape from an initial Gaussian distribution via a log-normal distribution to a Lifshitz-Slyozov-Wagner (LSW) distribution. Furthermore, the time-dependency of the ensemble-averaged particle size and particle density is determined. A mean field kinetic description captures the main trends in the observed behavior. However, at the individual nanoparticle level, deviations from the model are observed suggesting in part that the local environment influences the atom exchange process
The FIELDS Instrument Suite for Solar Probe Plus
NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products
- …