283 research outputs found

    Quantum-classical transition for an analog of double-slit experiment in complex collisions: Dynamical decoherence in quantum many-body systems

    Get PDF
    We study coherent superpositions of clockwise and anti-clockwise rotating intermediate complexes with overlapping resonances formed in bimolecular chemical reactions. Disintegration of such complexes represents an analog of famous double-slit experiment. The time for disappearance of the interference fringes is estimated from heuristic arguments related to fingerprints of chaotic dynamics of a classical counterpart of the coherently rotating complex. Validity of this estimate is confirmed numerically for the H+D2_2 chemical reaction. Thus we demonstrate the quantum--classical transition in temporal behavior of highly excited quantum many-body systems in the absence of external noise and coupling to an environment.Comment: 5 pages, 2 ps color figures. Accepted for publication in Phys. Rev.

    Cerebellar state estimation enables resilient coupling across behavioural domains

    Get PDF
    Cerebellar computations are necessary for fine behavioural control and may rely on internal models for estimation of behaviourally relevant states. Here, we propose that the central cerebellar function is to estimate how states interact with each other, and to use these estimates to coordinates extra-cerebellar neuronal dynamics underpinning a range of interconnected behaviours. To support this claim, we describe a cerebellar model for state estimation that includes state interactions, and link this model with the neuronal architecture and dynamics observed empirically. This is formalised using the free energy principle, which provides a dual perspective on a system in terms of both the dynamics of its physical—in this case neuronal—states, and the inferential process they entail. As a demonstration of this proposal, we simulate cerebellar-dependent synchronisation of whisking and respiration, which are known to be tightly coupled in rodents, as well as limb and tail coordination during locomotion. In summary, we propose that the ubiquitous involvement of the cerebellum in behaviour arises from its central role in precisely coupling behavioural domains

    Self-Assembly in the Growth of Precious Opal

    Full text link
    It is proposed that primary nucleation of amorphous microspherulites of hydrated silica in natural proto-precious-opal can be followed by a long range superlattice ordering process by means of electrostatic self-assembly. Necessary conditions in the thermodynamics are a high surface charge density on microspherulite surfaces, a long Debye length and an appropriate number density of nucleation centres. A further chemical requirement is a high alkaline environmental pH from 9 to 10. It is also proposed that the characteristic concentric spherical shell-like structure of spherulites, centred on primary nuclei, are due to sequential deposition of intrinsic salts which precipitate out when the corresponding solubility limits in the liquid are successively exceeded. It can be that the better-known sedimentation of microspherulites under gravity only plays part in the final stabilization period of overall growth.Comment: 12 pages pdf http://dx.doi.org/10.1016/j.jcrysgro.2009.09.04

    Growth and structure of prismatic boron nitride nanorods

    Full text link
    Prismatic boron nitride nanorods have been grown on single crystal silicon substrates by mechanical ball-milling followed by annealing at 1300 &deg;C. Growth takes place by rapid surface diffusion of BN molecules, and follows heterogeneous nucleation at catalytic particles of an Fe/Si alloy. Lattice imaging transmission electron microscopy studies reveal a central axial row of rather small truncated pyramidal nanovoids on each nanorod, surrounded by three basal planar BN domains which, with successive deposition of epitaxial layers adapt to the void geometry by crystallographic faceting. The bulk strain in the nanorods is taken up by the presence of what appear to be simple nanostacking faults in the external, near-surface domains which, like the nanovoids are regularly repetitive along the nanorod length. Growth terminates with a clear cuneiform tip for each nanorod. Lateral nanorod dimensions are essentially determined by the size of the catalytic particle, which remains as a foundation essentially responsible for base growth. Growth, structure, and dominating facets are shown to be consistent with a system which seeks lowest bulk and surface energies according to the well-known thermodynamics of the capillarity of solids.<br /

    The role of depletion of dimethyl sulfoxide before autografting: on hematologic recovery, side effects, and toxicity

    Get PDF
    AbstractCryopreservation of stem cells after collection from peripheral blood or bone marrow for autologous transplantation necessitates protection with dimethyl sulfoxide (DMSO). Unfortunately, DMSO, when infused with the thawed cell suspension, may induce serious complications and side effects. To assess whether depletion of DMSO before autografting affects safety and efficacy, 56 consenting consecutive patients treated with high-dose chemotherapy and autologous blood stem cell transplantation were assigned to obtain either an untreated or DMSO-depleted autograft. On the day of transplantation, the cryopreserved cells were thawed and infused to the patient either immediately or after washing 3 times in normal saline supplemented with 6% anticoagulant citrate dextrose solution. Cell count with viability, clonogenic assay, and phenotyping were performed before and after thawing and after washing. Hematologic recovery, side effects, and complications were recorded. The in vitro and clinical data on 56 patients show that the depletion of DMSO in vitro before autografting does not induce a significant loss of cell number, viability, colony-forming unit-granulocyte-macrophage activity, or number of CD34+ cells. Furthermore, it leads to a safe and sustained engraftment. The complications and side effects, as recorded by continuous monitoring, were substantially less; however, the procedure takes 3 to 4 hours of laboratory work per patient

    Macroscopic quantum superpositions in highly-excited strongly-interacting many-body systems

    Full text link
    We demonstrate a break-down in the macroscopic (classical-like) dynamics of wave-packets in complex microscopic and mesoscopic collisions. This break-down manifests itself in coherent superpositions of the rotating clockwise and anticlockwise wave-packets in the regime of strongly overlapping many-body resonances of the highly-excited intermediate complex. These superpositions involve 104\sim 10^4 many-body configurations so that their internal interactive complexity dramatically exceeds all of those previously discussed and experimentally realized. The interference fringes persist over a time-interval much longer than the energy relaxation-redistribution time due to the anomalously slow phase randomization (dephasing). Experimental verification of the effect is proposed.Comment: Title changed, few changes in the abstract and in the main body of the paper, and changes in the font size in the figure. Uses revTex4, 4 pages, 1 ps figur

    Slow cross-symmetry phase relaxation in complex collisions

    Full text link
    We discuss the effect of slow phase relaxation and the spin off-diagonal SS-matrix correlations on the cross section energy oscillations and the time evolution of the highly excited intermediate systems formed in complex collisions. Such deformed intermediate complexes with strongly overlapping resonances can be formed in heavy ion collisions, bimolecular chemical reactions and atomic cluster collisions. The effects of quasiperiodic energy dependence of the cross sections, coherent rotation of the hyperdeformed (3:1)\simeq (3:1) intermediate complex, Schr\"odinger cat states and quantum-classical transition are studied for 24^{24}Mg+28^{28}Si heavy ion scattering.Comment: 10 pages including 2 color ps figures. To be published in Physics of Atomic Nuclei (Yadernaya fizika

    Tuning antiviral CD8 T-cell response via proline-altered peptide ligand vaccination

    Get PDF
    Viral escape from CD8+ cytotoxic T lymphocyte responses correlates with disease progression and represents a significant challenge for vaccination. Here, we demonstrate that CD8+ T cell recognition of the naturally occurring MHC-I-restricted LCMV-associated immune escape variant Y4F is restored following vaccination with a proline-altered peptide ligand (APL). The APL increases MHC/peptide (pMHC) complex stability, rigidifies the peptide and facilitates T cell receptor (TCR) recognition through reduced entropy costs. Structural analyses of pMHC complexes before and after TCR binding, combined with biophysical analyses, revealed that although the TCR binds similarly to all complexes, the p3P modification alters the conformations of a very limited amount of specific MHC and peptide residues, facilitating efficient TCR recognition. This approach can be easily introduced in peptides restricted to other MHC alleles, and can be combined with currently available and future vaccination protocols in order to prevent viral immune escape

    Refinements to rodent head fixation and fluid/food control for neuroscience

    Get PDF
    The use of head fixation in mice is increasingly common in research, its use having initially been restricted to the field of sensory neuroscience. Head restraint has often been combined with fluid control, rather than food restriction, to motivate behaviour, but this too is now in use for both restrained and non-restrained animals. Despite this, there is little guidance on how best to employ these techniques to optimise both scientific outcomes and animal welfare. This article summarises current practices and provides recommendations to improve animal wellbeing and data quality, based on a survey of the community, literature reviews, and the expert opinion and practical experience of an international working group convened by the UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). Topics covered include head fixation surgery and post-operative care, habituation to restraint, and the use of fluid/food control to motivate performance. We also discuss some recent developments that may offer alternative ways to collect data from large numbers of behavioural trials without the need for restraint. The aim is to provide support for researchers at all levels, animal care staff, and ethics committees to refine procedures and practices in line with the refinement principle of the 3Rs
    corecore