1,004 research outputs found

    Design of printed circuit board layouts using graph theoretic methods

    Get PDF

    Industry Specialization and Auditor Quality in US Markets

    Get PDF
    This study investigates the relation between audit quality, auditor industry market share, and audit fees. Prior literature has asserted that audit providers with high market shares can be designated as industry specialists and that the fee premiums that sometimes attach to these auditors is evidence of a quality differentiated audit product. Using data from the U.S. audit market for the fiscal year 2003 we extend this literature by investigating the relationships among audit fee premiums, auditor market shares, and two dimensions of audit quality: external reporting and economies of scope in providing joint audit and non-audit services. We find little evidence to support the conjecture that high market share auditors provide increased audit quality. Further, we find that most auditors with high market shares do not seem to charge a fee premium. To the contrary, we report that the high market share fee premiums found in pooled (across industry) tests are primarily attributable to a small set of industries in which the high market share (specialist) auditor has a dominant position. This leads us to conclude that the available evidence is more supportive of the hypothesis that high-market share firms are extracting rents than the hypothesis that these auditors are providing a quality differentiated product

    First Results from the CHARA Array. II. A Description of the Instrument

    Full text link
    The CHARA Array is a six 1-m telescope optical/IR interferometric array located on Mount Wilson California, designed and built by the Center for High Angular Resolution Astronomy of Georgia State University. In this paper we describe the main elements of the Array hardware and software control systems as well as the data reduction methods currently being used. Our plans for upgrades in the near future are also described

    Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae

    Get PDF
    Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity

    Predicting the diagnosis of autism in adults using the Autism-Spectrum Quotient (AQ) questionnaire

    Get PDF
    This work was supported by a National Institute for Health Research (NIHR) programme grant (RP-PG-0606-1045), by the BGC as well as by the European Union via the EU-AIMS consortium. J.H. was supported by the Wellcome Trust and by the Biomedical Research Centre (BRC) at King's College London. D.G.M was supported by the Dr Mortimer D. Sackler Foundation. P.B was supported by an NIHR Senior Investigator award and the BRC in Mental Health at the South London and Maudsley NHS Trust. C.E.W receives postdoctoral research funding via the Marie Curie Action, co-financed by the Junta de Andalucía and the European Commission under Talentia Postdoc grant number 267 226. The authors acknowledge financial support from the Department of Health via the NIHR BRC and Dementia Unit awarded to South London and Maudsley NHS Foundation Trust, in partnership with King's College London and King's College Hospital NHS Foundation Trust. This work was supported by EU-AIMS (European Autism Interventions), which receives support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115300, the resources of which are composed of financial contributions from the European Union's Seventh Framework Programme (grant FP7/2007-2013), from the European Federation of Pharmaceutical Industries and Associations companies’ in-kind contributions, and from Autism Speaks

    Multi-material additive manufacturing of low sintering temperature Bi2Mo2O9 ceramics with Ag floating electrodes by selective laser burnout

    Get PDF
    Additive manufacturing (AM) of co-fired low temperature ceramics offers a unique route for fabrication of novel 3D radio frequency (RF) and microwave communication components, embedded electronics and sensors. This paper describes the first-ever direct 3D printing of low temperature co-fired ceramics/floating electrode 3D structures. Slurry-based AM and selective laser burnout (SLB) were used to fabricate bulk dielectric, Bi2Mo2O9 (BMO, sintering temperature = 620–650°C, εr = 38) with silver (Ag) internal floating electrodes. A printable BMO slurry was developed and the SLB optimised to improve edge definition and burn out the binder without damaging the ceramic. The SLB increased the green strength needed for shape retention, produced crack-free parts and prevented Ag leaching into the ceramic during co-firing. The green parts were sintered after SLB in a conventional furnace at 645°C for 4 h and achieved 94.5% density, compressive strength of 4097 MPa, a relative permittivity (εr) of 33.8 and a loss tangent (tan δ) of 0.0004 (8 GHz) for BMO. The feasibility of using SLB followed by a post-printing sintering step to create BMO/Ag 3D structures was thus demonstrated

    Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer—the relationship with regulatory hypoxia-inducible factor-1α expression, tumor invasiveness, and patient prognosis

    Get PDF
    Increased glucose uptake mediated by glucose transporters and reliance on glycolysis are common features of malignant cells. Hypoxia-inducible factor-1α supports the adaptation of hypoxic cells by inducing genes related to glucose metabolism. The contribution of glucose transporter (GLUT) and hypoxia-inducible factor-1α (HIF-1α) activity to tumor behavior and their prognostic value in head and neck cancers remains unclear. The aim of this study was to examine the predictive value of GLUT1, GLUT3, and HIF-1α messenger RNA (mRNA)/protein expression as markers of tumor aggressiveness and prognosis in laryngeal cancer. The level of hypoxia/metabolic marker genes was determined in 106 squamous cell laryngeal cancer (SCC) and 73 noncancerous matched mucosa (NCM) controls using quantitative realtime PCR. The related protein levels were analyzed by Western blot. Positive expression of SLC2A1, SLC2A3, and HIF-1α genes was noted in 83.9, 82.1, and 71.7 % of SCC specimens and in 34.4, 59.4, and 62.5 % of laryngeal cancer samples. Higher levels of mRNA/protein for GLUT1 and HIF-1α were noted in SCC compared to NCM (p<0.05). SLC2A1 was found to have a positive relationship with grade, tumor front grading (TFG) score, and depth and mode of invasion (p<0.05). SLC2A3 was related to grade and invasion type (p<0.05). There were also relationships of HIF-1α with pTNM, TFG scale, invasion depth and mode, tumor recurrences, and overall survival (p<0.05). In addition, more advanced tumors were found to be more likely to demonstrate positive expression of these proteins. In conclusion, the hypoxia/metabolic markers studied could be used as molecular markers of tumor invasiveness in laryngeal cancer.This work was supported, in part, by the statutory fund of the Department of Cytobiochemistry, University of Łódź, Poland (506/811), and by grant fromtheNational Science Council, Poland (N403 043 32/2326)

    Measurements of Deuteron Photodisintegration up to 4.0 GeV

    Get PDF
    The first measurements of the differential cross section for the d(gamma,p)n reaction up to 4.0 GeV were performed at Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. We report the cross sections at the proton center-of-mass angles of 36, 52, 69 and 89 degrees. These results are in reasonable agreement with previous measurements at lower energy. The 89 and 69 degree data show constituent-counting-rule behavior up to 4.0 GeV photon energy. The 36 and 52 degree data disagree with the counting rule behavior. The quantum chromodynamics (QCD) model of nuclear reactions involving reduced amplitudes disagrees with the present data.Comment: 5 pages (REVTeX), 1 figure (postscript
    corecore