12,292 research outputs found
Coexistence of qubit effects
Two quantum events, represented by positive operators (effects), are coexistent if they can occur as possible outcomes in a single measurement scheme. Equivalently, the corresponding effects are coexistent if and only if they are contained in the ranges of a single (joint) observable. Here we give several equivalent characterizations of coexistent pairs of qubit effects. We also establish the equivalence between our results and those obtained independently by other authors. Our approach makes explicit use of the Minkowski space geometry inherent in the four-dimensional real vector space of selfadjoint operators in a two-dimensional complex Hilbert space
Stability and Dynamics of Cross Solitons in Harmonically Confined Bose-Einstein Condensates
We examine the stability and dynamics of a family of crossed dark solitons in
a harmonically confined Bose-Einstein condensate in two dimensions. Working in
a regime where the fundamental snake instability is suppressed, we show the
existence of an instability which leads to an interesting collapse and revival
of the initial state for the fundamental case of two crossed solitons. The
instability originates from the singular point where the solitons cross, and we
characterise it by examining the Bogoliubov spectrum. Finally, we extend the
treatment to systems of higher symmetry.Comment: 7 pages, 7 figure
Maintaining Quantum Coherence in the Presence of Noise through State Monitoring
Unsharp POVM measurements allow the estimation and tracking of quantum
wavefunctions in real-time with minimal disruption of the dynamics. Here we
demonstrate that high fidelity state monitoring, and hence quantum control, is
possible even in the presence of classical dephasing and amplitude noise, by
simulating such measurements on a two-level system undergoing Rabi
oscillations. Finite estimation fidelity is found to persist indefinitely long
after the decoherence times set by the noise fields in the absence of
measurement.Comment: 5 pages, 4 figure
Ion induced density bubble in a strongly correlated one dimensional gas
We consider a harmonically trapped Tonks-Girardeau gas of impenetrable bosons
in the presence of a single embedded ion, which is assumed to be tightly
confined in a RF trap. In an ultracold ion-atom collision the ion's charge
induces an electric dipole moment in the atoms which leads to an attractive
potential asymptotically. We treat the ion as a static deformation of
the harmonic trap potential and model its short range interaction with the gas
in the framework of quantum defect theory. The molecular bound states of the
ionic potential are not populated due to the lack of any possible relaxation
process in the Tonks-Girardeau regime. Armed with this knowledge we calculate
the density profile of the gas in the presence of a central ionic impurity and
show that a density \textit{bubble} of the order of a micron occurs around the
ion for typical experimental parameters. From these exact results we show that
an ionic impurity in a Tonks gas can be described using a pseudopotential,
allowing for significantly easier treatment.Comment: Accepted for publication in Physical Review A (Rapid Communications)
Measurement-induced generation of spatial entanglement in a two-dimensional quantum walk with single-qubit coin
One of the proposals for the exploitation of two-dimensional quantum walks
has been the efficient generation of entanglement. Unfortunately, the
technological effort required for the experimental realization of standard
two-dimensional quantum walks is significantly demanding. In this respect, an
alternative scheme with less challenging conditions has been recently studied,
particularly in terms of spatial-entanglement generation [C. Di Franco, M. Mc
Gettrick, and Th. Busch, Phys. Rev. Lett. 106, 080502 (2011)]. Here, we extend
the investigation to a scenario where a measurement is performed on the coin
degree of freedom after the evolution, allowing a further comparison with the
standard two-dimensional Grover walk.Comment: 9 pages, 4 figures, RevTeX
Orthogonality catastrophe as a consequence of qubit embedding in an ultra-cold Fermi gas
We investigate the behaviour of a single qubit coupled to a low-dimensional,
ultra-cold Fermi gas. The scattering between the system and the fermions leads
to the loss of any coherence in the initial state of the qubit and we show that
the exact dynamics of this process is strongly influenced by the effect of the
orthogonality catastrophe within the gas. We highlight the relationship between
the Loschmidt echo and the retarded Green's function - typically used to
formulate the dynamical theory of the catastrophe - and demonstrate that the
effect can be triggered and characterized via local operations on the qubit. We
demonstrate how the expected broadening of the spectral function can be
observed using Ramsey interferometry on the qubit.Comment: 4 and a bit pages, 3 figures. Updated versio
Enhanced Pauli blocking of light scattering in a trapped Fermi gas
Pauli blocking of spontaneous emission by a single excited-state atom has
been predicted to be dramatic at low temperature when the Fermi energy
exceeds the recoil energy . The photon scattering
rate of a ground-state Fermi gas can also be suppressed by occupation of the
final states accessible to a recoiling atom, however suppression is diminished
by scattering events near the Fermi edge. We analyze two new approaches to
improve the visibility of Pauli blocking in a trapped Fermi gas. Focusing the
incident light to excite preferentially the high-density region of the cloud
can increase the blocking signature by 14%, and is most effective at
intermediate temperature. Spontaneous Raman scattering between imbalanced
internal states can be strongly suppressed at low temperature, and is
completely blocked for a final-state in the
high imbalance limit.Comment: 12 pages, 8 figures. v4: to appear in Journal of Physics B: Atomic,
Molecular, and Optical Physic
- …
