We consider a harmonically trapped Tonks-Girardeau gas of impenetrable bosons
in the presence of a single embedded ion, which is assumed to be tightly
confined in a RF trap. In an ultracold ion-atom collision the ion's charge
induces an electric dipole moment in the atoms which leads to an attractive
r−4 potential asymptotically. We treat the ion as a static deformation of
the harmonic trap potential and model its short range interaction with the gas
in the framework of quantum defect theory. The molecular bound states of the
ionic potential are not populated due to the lack of any possible relaxation
process in the Tonks-Girardeau regime. Armed with this knowledge we calculate
the density profile of the gas in the presence of a central ionic impurity and
show that a density \textit{bubble} of the order of a micron occurs around the
ion for typical experimental parameters. From these exact results we show that
an ionic impurity in a Tonks gas can be described using a pseudopotential,
allowing for significantly easier treatment.Comment: Accepted for publication in Physical Review A (Rapid Communications)