99 research outputs found

    Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study is to investigate in vitro antioxidant, antimicrobial and anticancer activity of the acetone extracts of the lichens <it>Cladonia furcata, Lecanora atra </it>and <it>Lecanora muralis</it>.</p> <p>Methods</p> <p>Antioxidant activity was evaluated by five separate methods: free radical scavenging, superoxide anion radical scavenging, reducing power, determination of total phenolic compounds and determination of total flavonoid content. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method against six species of bacteria and ten species of fungi. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using MTT method.</p> <p>Results</p> <p>Of the lichens tested, <it>Lecanora atra </it>had largest free radical scavenging activity (94.7% inhibition), which was greater than the standard antioxidants. Moreover, the tested extracts had effective reducing power and superoxide anion radical scavenging. The strong relationships between total phenolic and flavonoid contents and the antioxidant effect of tested extracts were observed. Extract of <it>Cladonia furcata </it>was the most active antimicrobial agent with minimum inhibitory concentration values ranging from 0.78 to 25 mg/mL. All extracts were found to be strong anticancer activity toward both cell lines with IC<sub>50 </sub>values ranging from 8.51 to 40.22 μg/mL.</p> <p>Conclusions</p> <p>The present study shows that tested lichen extracts demonstrated a strong antioxidant, antimicrobial and anticancer effects. That suggest that lichens may be used as as possible natural antioxidant, antimicrobial and anticancer agents to control various human, animal and plant diseases.</p

    Natural products in drug discovery: advances and opportunities

    Get PDF
    Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments — including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances — are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities

    Professor William Jones and His Materials Chemistry Group: Innovations and Advances in the Chemistry of Solids

    No full text
    An introduction to the virtual special issue in honor of Prof. William Jones, wherein the authors reflect on his scientific career and his many outstanding contributions to organic solid-state chemistry

    Anti-inflammatory and anti-oxidant activity of a new class of phenyl-pyrazolone derivatives.

    No full text
    The anti-inflammatory activity of a new class of phenyl-pyrazolone derivatives, structurally related to phenidone, has been evaluated using the Croton oil ear test in mice as model of acute inflammation. Derivative 5h reduces the percentage of oedema similarly to indomethacin and more efficiently than phenylbutazone. The anti-inflammatory activity of these two reference drugs depends on their COX inhibition, but for the synthesized derivatives it has not been demonstrated a significant COX or LOX inhibition, as previously reported. While the anti-inflammatory activity of phenidone is correlated to its anti-oxidant properties, the redox potential of these compounds appears not decisive in the inflammatory process inhibition. In order to investigate the mechanism of action for these compounds, we quantified their anti-oxidant activity and the lipophilicity, and a relationship between the calculated logP and the percentage of oedema reduction was found. We hypothesize that the anti-inflammatory activity, recorded in vivo, could be related to lipophilic parameter of these compounds

    Bioactive constituents of Artemisia monosperma

    No full text
    During a study on the chemistry and biological activity of Kuwaiti plants, new metabolites including 4,6-dihydroxy-3-[3′-methyl-2′-butenyl]-5-[4″-hydroxy-3″-methyl-2″-butenyl]-cinnamic acid (1), the 3R,8R stereoisomer of the C17 polyacetylene dehydrofalcarindiol (2) and a C10 polyacetylene glucoside (3) were characterised by spectroscopic means. Additionally, the previously characterised natural products 1,3R,8R-trihydroxydec-9-en-4,6-yne (4), spathulenol (5) and eriodyctiol-7-methyl ether (6) were also isolated. Compounds 2, 3, and 4 were evaluated for their ability to inhibit the enzyme 12-lipoxygenase and 3 and 4 showed moderate activity at 30 μg/ml. Compound 2 was evaluated against a panel of colorectal and breast cancer cell lines and IC50 values ranged from 5.8 to 37.6 μg/ml. Against a panel of fast-growing mycobacteria and a standard ATCC strain of Staphylococcus aureus, compound 6 exhibited minimum inhibitory concentrations in the range of 64–128 μg/ml

    Mechanistic in situ and ex situ studies of phase transformations in molecular co-crystals

    Get PDF
    Co‐crystallisation is widely explored as a route to improve the physical properties of pharmaceutical active ingredients, but little is known about the fundamental mechanisms of the process. Herein, we apply a hyphenated differential scanning calorimetry—X‐ray diffraction technique to mimic the commercial hot melt extrusion process, and explore the heat‐induced synthesis of a series of new co‐crystals containing isonicotinamide. These comprise a 1:1 co‐crystal with 4‐hydroxybenzoic acid, 2:1 and 1:2 systems with 4‐hydroxyphenylacetic acid and a 1:1 crystal with 3,4‐dihydroxyphenylactic acid. The formation of co‐crystals during heating is complex mechanistically. In addition to co‐crystallisation, conversions between polymorphs of the co‐former starting materials and co‐crystal products are also observed. A subsequent study exploring the use of inkjet printing and milling to generate co‐crystals revealed that the synthetic approach has a major effect on the co‐crystal species and polymorphs produced

    Functionalised tetrahydrofuran fragments from carbohydrates or sugar beet pulp biomass

    No full text
    Carbohydrate biomass represents a potentially valuable sustainable source of raw materials for chemical synthesis, but for many applications, selective deoxygenation/dehydration of the sugars present is necessary to access compounds with useful chemical and physical properties. Selective dehydration of pentose sugars to give tetrahydrofurans can be achieved by treatment of the corresponding N,N-dimethylhydrazones under acidic or basic conditions, with the two approaches showing complementary stereoselectivity. The dehydration process is readily scalable and the THF hydrazones derived from arabinose, ribose, xylose and rhamnose were converted into a range of useful fragments containing primary alcohol, ketone, carboxylic acid or amine functional groups. These compounds have potentially useful physiochemical properties making them suitable for incorporation into fragment/lead generation libraries for medicinal chemistry. It was also shown that L-arabinose hydrazone could be obtained selectively from a crude sample of hydrolysed sugar beet pulp
    corecore