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Background
Reliability of a product is defined by the probability that the product will perform well 
it is intended function for a specified time period or usage limit under normal operat-
ing condition (Meeker and Escobar 1998; Blischke and Murthy 2000). Because of rapid 
advances in manufacturing technology, customers expect to purchase products that will 
be highly sophisticated, reliable and safe. In recent years many manufacturers are col-
lecting and analyzing field failure data to enhance the reliability of their products and to 
improve goodwill and customer satisfaction (Blischke et al. 2011).

The paper analyses an Aircraft component (Windshield of a particular model) failure 
data that contain both failure and censored times. The same data are analyzed by Murthy 
et al. (2004) and Ruhi (2015). Murthy et al. (2004) have fitted a twofold Weibull mixture 
model for the data and estimated the parameters of the model by applying a graphical 
method based on Weibull probability paper (WPP) plot. The graphical method has been 
used widely to estimate the parameters of the Weibull mixture model. The bulk of the 
existing literature deals with the well-separated subpopulations cases and uses various 
approximations for plotting and the characterizations of the asymptotes. As mentioned 
in Murthy et al. (2004), there are two serious drawbacks in the graphical method. These 
are as follows:
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  • The graphical method yields very crude estimates unless applied repeated iteration 
and evaluated by vision. As such, they can be used as starting points for more sophis-
ticated statistical methods.

  • They do not provide any statistical confidence limits for the estimated parameters.

To overcome these drawbacks, here we apply the Expectation–Maximization (EM) 
algorithm to find the maximum likelihood estimates of the twofold Weibull mixture 
model and investigate the performance of the proposed method over the method of 
Murthy et  al. (2004). The performance of the method will be evaluated by numerical 
simulation studies.

The outline of the paper is as follows. “Mixture models” describes the assumed mixture 
model. “Maximum-likelihood estimation of model parameters” explains the parameter 
estimation method. “Case study: analysis of aircraft Windshield failure” data presents a 
case study based on aircraft Windshield failure data. “Simulation study” presents a simu-
lation study to investigate the performance of the method and “Conclusion” concludes 
the paper. Finally Appendix provides R codes that used in the paper for estimating the 
parameters of the model.

Mixture models
Various types of statistical models have been applied extensively in the analysis of fail-
ure data for manufactured products. However, there are situations where some compo-
nents of a product are produced over a period of time by collecting items from different 
vendors, using different raw materials, machines, and manpower. In such situations, 
mixtures of distributions are often used in the analysis of reliability data as the physical 
characteristics and the reliabilities of such components may be different and difficult to 
distinguish easily and clearly.

The cumulative distribution function (cdf ), probability density function (pdf) and haz-
ard function (hf ) of a general K-fold mixture model involving K subpopulations have 
presented in Murthy et al. (2004) and Blischke et al. (2011). The cumulative distribution 
function (cdf ) of a general K-fold mixture model can be written as

where Fj(t) is the cdf of the j-th sub-population, pj is the mixing probability of the j-th 
sub-population, pj > 0 and 

∑K
j=1 pj = 1. The probability density function (pdf) is given by

where fj(t) is the pdf associated with Fj(t). The hazard function h(t) is

(1)G(t) =

K
∑

j=1

pjFj(t)

(2)g(t) =

K
∑

j=1

pjfj(t)

(3)h(t) =

K
∑

j=1

wj(t) hj(t)
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where hj(t) is associated with subpopulation j, and

where 
∑K

j=1 wj(t) = 1 with

From (3), we see that the failure rate for the model is a weighted mean of the failure rate 
for the subpopulations with the weights varying with t, t ≥ 0.

Special case: twofold Weibull mixture model

The cdf of the twofold mixture model (putting K = 2 in (1)) for the random variable T is 
given by

If F1(t) follows Weibull (α1, β1) and F2(t) follows Weibull (α2, β2) distributions, the cdf for 
twofold Weibull–Weibull mixture model from Eq. (6) becomes

The corresponding probability density function (pdf) is

The reliability function is

And the hazard function is

Other two-fold mixture models can be derived by using different cdfs from different life-
time distributions, similarly. In the remainder of the paper we apply this twofold Weibull 
mixture model to analyze the data set.

(4)
wj(t) =

pjRj(t)

K
∑

j=1

pjRj(t)

, j = 1, 2, . . . ,K ,

(5)Rj(t) = 1− Fj(t), j = 1, 2, . . . ,K .

(6)G(t) = pF1(t)+ (1− p)F2(t), t ≥ 0
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Maximum‑likelihood estimation of model parameters
If the data contain the failure/censored random variable ti and failure/censored indica-
tor δi, (if the ith observation is failure then δi = 1 and if it is censored then δi = 1) for 
i = 1, 2, · · · n, the likelihood function under random censoring scheme for the data is 
given by

where, θ is the parameter vector for the assumed model. Taking log on both sides of 
Eq. (11), we get,

In the case of twofold Weibull mixture model with θ = {β1, α1, β2, α2, p}, the log-likeli-
hood function (12) becomes

The maximum likelihood estimates of the parameters are obtained by taking the partial 
derivatives of (13) with respect to β1, α1, β2, α2 and p and setting to zero. The maximum 
likelihood estimating equations obtained from (13) do not give closed form solutions for 
the parameters θ = {β1, α1, β2, α2, p}. Therefore, it requires a numerical iterative proce-
dure for finding the MLEs of the parameters.

Estimation of mixing proportions using EM Algorithm

The Expectation–Maximization (EM) algorithm is an efficient iterative procedure to 
compute the Maximum Likelihood Estimates (MLEs) of the parameters of the distribu-
tion in the presence of missing or hidden data (Dempster et  al. 1977; McLachlan and 
Krishnan 2008). Bordes and Chauveau (2012) discussed several iterative methods based 
on EM and stochastic EM methodology to estimate parametric or semi parametric mix-
ture models for randomly right censored lifetime data, conditioned that they are iden-
tifiable. Here we discuss the EM algorithm for finding the MLEs of the parameters of a 
general K-fold mixture model with parameters � = (p1, · · · , pK , θ1, · · · , θK ), where pj is 
mixing parameters and θj is the parameters for the density function fj, j = 1, 2, . . . ,K  . 
Let y = (t1, . . . , tn)

′ denotes the observed random sample obtained from the mixture 
density. Let us introduce the unobservable or missing data vectors z =

(

z′1, . . . , z
′
n

)′ , 
where zi is a K-dimensional vector of zero–one indicator variables and where zij is one 
or zero according to whethertiarose or did not arise from the j-th component of the mix-
ture (i = 1, 2, . . . , n; j = 1, 2, . . . ,K ). The EM algorithm handles the unobservable data 
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to the problem by working with the current conditional expectation of the complete-
data log likelihood given the observed data. Let us define the complete-data vector x as 
x =

(

y′, z′
)′
.

Each iteration of the EM algorithm consists of two steps. The Expectation or E-step 
computes the conditional expectation of the complete-data log-likelihood for Θ given 
observed data, which at the (m + 1)th iteration can be expressed as

As (14) is linear in the unobservable data zij, the E-step (on the (m +  1)th iteration) 
simply requires the calculation of the current conditional expectation of Zij given the 
observed data y, where Zij is the random variable corresponding to zij. Now

Here zij(m) are the posterior probabilities which can be expressed using the Bayes’s theo-
rem as

The evaluation of this expectation is called the E-step of the algorithm. The second 
step (the Maximization or M-step) maximizes (14) with respect to the parameters to 
obtain new parameter estimations Θ(m+1). To maximize (14), we can maximize the term 
containing pj and the term containing θj independently since they are not related. To 
find the expression for pj, we introduce the Lagrange multiplier λ with the constraint 
∑K

j=1 pj = 1. Under this constraint, taking the derivative of (14) with respect to pj and 
setting equal to zero, we get

Summing both sizes over j and using 
m
∑

j=1

z
(m)
ij = 1; we get that λ = −n resulting in

See, Bucar et al. (2004) for more details.
For some distributions, it is possible to get closed-form analytical expressions for θj. 

However, in the case of Weibull distributions with θj = (αj, βj), j = 1, 2, . . . ,K , we have 
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to apply numerical procedures to find MLEs of the parameters. Here we apply the sur-
vreg function with weight (weight > 0) given in the survival package of the R-program. 
The algorithm proceeds by using the newly derived parameters as the guess for the next 
iteration. The E- and M-steps are iterated until the algorithm converges.

Finally, the EM algorithm for estimating the parameters of a K-fold Weibull mixture 
distribution can be summarized in a step-by-step procedure as follows:

Step 1 Begin with initial guesses of pj
(0), αj

(0) and βj
(0) for j = 1, 2, . . . ,K

Step 2 Using the initial values of pj
(0), αj

(0) and βj
(0), at m-th iteration calculate the condi-

tional expectation of zij, i.e., zij
(m) using (15).

Step 3 At them-th iteration, find the MLEs of pj
(m+1), αj

(m+1 and βj
(m+1) as follows:

(a) Find the MLE for pj
(m+1), using (17).

(b) Estimate αj
(m+1), and βj

(m+1) using survreg function.

Step 4 Repeat Steps 2 and 3 until the algorithm converges with a desired accuracy.

The applications of the EM algorithm are broad because of its flexibility in analyzing 
incomplete or missing data. In any fields, when it is difficult to maximize the compli-
cated likelihood function, various extensions and modifications of the EM algorithm 
have been proposed to simplify the computations, e.g., see Wei and Tanner (1990), Meng 
and Rubin (1993) and Liu and Rubin (1994). More detailed theory and applications of 
the EM algorithm can be found in McLachlan and Krishnan (2008).

Case study: analysis of aircraft Windshield failure data
In this section, as a case study, we analyze a set of aircraft Windshield failure data. We 
apply twofold Weibull mixture model for the failure data and estimate various charac-
teristics of the Windshield, such as the reliability function, B10 life, mean time to failure, 
etc. to assess the reliability of the Windshield.

Aircraft Windshield failure data

Data on failure and censored times for a particular model of Windshield given in Table 1 
are taken from Murthy et al. (2004), originally given in Blischke and Murthy (2000). The 
data consist of 88 failure times and 65 censored times out of 153 observations. Here cen-
sored time (or service time) means that the Windshields have not failed at the time of 
observation. The unit for measurement of time is 1000 h.

Nonparametric estimate of reliability function

Figure  1 is the reliability (or survival) plot for the component. The plot appears to be 
reasonable; it shows the estimated MTTF is 3.03549 thousand hours or approximately 
127 days. The nonparametric estimate of median lifetime is 2964 h, indicates that 50 % 
of the Windshield fails at 2964 h. The nonparametric estimate of cdf, known as empirical 
distribution function (edf ) is one minus the estimated reliability function.
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Parametric estimate of reliability function

Murthy et al. (2004) assumed the twofold Weibull mixture model for this data set and 
estimated the model parameters based on Weibull Probability Plots (WPP) method. 
In this article we apply the EM algorithm, discussed in “Estimation of mixing propor-
tions using EM algorithm”, to find the maximum likelihood estimates of the parameters 
θ = {β1, α1, β2, α2, p} for the twofold Weibull mixture model and investigate the perfor-
mance of the proposed method over the method of Murthy et al. (2004). A comparison 
between the estimates of the parameters obtained by two different methods is given in 
Table 2.

Table 1 Windshield failure data

T times in 1000 h; δ failure/censored indicator

T δ T δ T δ T δ T δ

0.040 1 2.154 1 3.595 1 1.183 0 3.003 0

0.301 1 2.190 1 3.699 1 1.244 0 3.102 0

0.309 1 2.194 1 3.779 1 1.249 0 3.304 0

0.557 1 2.223 1 3.924 1 1.262 0 3.483 0

0.943 1 2.224 1 4.035 1 1.360 0 3.500 0

1.070 1 2.229 1 4.121 1 1.436 0 3.622 0

1.124 1 2.300 1 4.167 1 1.492 0 3.665 0

1.248 1 2.324 1 4.240 1 1.580 0 3.695 0

1.281 1 2.349 1 4.255 1 1.719 0 4.015 0

1.281 1 2.385 1 4.278 1 1.794 0 4.628 0

1.303 1 2.481 1 4.305 1 1.915 0 4.806 0

1.432 1 2.610 1 4.376 1 1.920 0 4.881 0

1.480 1 2.625 1 4.449 1 1.963 0 5.140 0

1.505 1 2.632 1 4.485 1 1.978 0

1.506 1 2.646 1 4.570 1 2.053 0

1.568 1 2.661 1 4.602 1 2.065 0

1.615 1 2.688 1 4.663 1 2.117 0

1.619 1 2.823 1 4.694 1 2.137 0

1.652 1 2.890 1 0.046 0 2.141 0

1.652 1 2.902 1 0.140 0 2.163 0

1.757 1 2.934 1 0.150 0 2.183 0

1.795 1 2.962 1 0.248 0 2.240 0

1.866 1 2.964 1 0.280 0 2.341 0

1.876 1 3.000 1 0.313 0 2.435 0

1.899 1 3.103 1 0.389 0 2.464 0

1.911 1 3.114 1 0.487 0 2.543 0

1.912 1 3.117 1 0.622 0 2.560 0

1.914 1 3.166 1 0.900 0 2.592 0

1.981 1 3.344 1 0.952 0 2.600 0

2.010 1 3.376 1 0.996 0 2.670 0

2.038 1 3.385 1 1.003 0 2.717 0

2.085 1 3.443 1 1.010 0 2.819 0

2.089 1 3.467 1 1.085 0 2.820 0

2.097 1 3.478 1 1.092 0 2.878 0

2.135 1 3.578 1 1.152 0 2.950 0
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We have estimated the cdfs and reliability functions of twofold Weibull mixture model 
based on both non-parametric (by Kaplan–Meier method) and parametric (by EM Algo-
rithm) approaches. The cdf and reliability function are also estimated by using the WPP 
plot method [estimates are taken from Murthy et al. (2004)]. Figures 2 and 3 compare 
the estimated reliability functions and cdfs, respectively to find out the best approach for 
the data set.

Fig. 1 Nonparametric reliability plots

Table 2 Estimates of parameters of twofold Weibull mixture model

Parameters Estimates based  
on WPP

Estimates based 
on EM algorithm

β̂1 0.429 1.2098

α̂1 8.230 0.2541

β̂2 2.990 2.7802

α̂2 3.210 3.4856

p̂ 0.136 0.0176
(

1− p̂
)

0.864 0.9823

Fig. 2 Comparison of reliability functions
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From Fig.  2, we observe that the reliability function obtained by the EM algorithm 
method is much closer to the Kaplan–Meier estimate than that of the reliability function 
estimated by the WPP plot method. The plots of cdfs shown in Fig. 3 conclude the same. 
These indicate that the method of estimation with the EM algorithm procedure is better 
than the WPP plot procedure.

The estimates of adjusted Anderson–Darling (AD) test statistic based on WPP 
method and EM algorithm method are 412.5845 and 410.2851, respectively. This again 
indicates that the EM algorithm method provides better fit for the data set than the 
WPP method.

Reliability Characteristics of Windshield Data

Some of the reliability related important characteristics such as mean time to failure 
(MTTF), B10 lifetime, B50 (median) lifetime of the Windshield obtained by two meth-
ods are displayed in Table 3.

Table  3 indicates that the estimates of MTTF obtained from maximum likelihood 
method via the EM algorithm and from WPP plot method are 3.0525 (thousand hours) 
and 5.5782 (thousand hours), respectively. Estimate of MTTF obtained by EM algo-
rithm is very close to the nonparametric estimate of MTTF (3.03549 thousand hours) 
given in Fig. 1. The WPP method overestimates the MTTF in this case. From the esti-
mates of B10-lifetime and B50-lifetime, we may conclude according to EM algorithm 
method that, 10 % of the total components fail approximately at 1524 h and 50 % fail at 
3004 h.

Simulation study
In this section, we use computer simulation to evaluate the performance of the 
method numerically. Numerically generated twofold mixture data are used to develop 
the twofold Weibull mixture model and to find the ML estimates of model parameters 

Fig. 3 Comparison of cdfs

Table 3 Estimates of reliability characteristics of Windshield

Quantities EM algorithm method WPP Plot method

MTTF 3.0525 5.5782

B10-Lifetime 1.5248 1.3125

B50-Lifetime 3.0046 2.9298
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under right censored data. Using simulated data, the ML estimates of the model 
parameters, the sample means (SMs) and the mean squared errors (MSEs) of esti-
mates are computed. Simulation programming codes are written using statistical 
software package R.

Steps of simulation study

Here we describe the step-by-step algorithm for simulation of twofold Weibull mixture 
model and estimation of model parameters via the EM algorithm.

Step 1 We consider a set of true value for the 5 parameters θ =  {β1, α1, β2, α2, p} of 
twofold Weibull mixture model. Under this set of parameter, we generate n = n1 + n2 
samples from the twofold Weibull mixture model using the software R-Language (ver-
sion-3.2.2). A desired percent (10, 20 and 30 %) of the largest generated sample out of 
200, are considered as the right censored observations and remaining are assumed as 
failed lifetime.
Step 2 Based on the generated right censored data, we estimate the parameters via the 
EM algorithm assuming that the mixing sub-populations are unknown. The methodol-
ogy is discussed in “Estimation of mixing proportions using EM algorithm”.
Step 3 The above Steps 1 and 2 are repeated 1000 times under two Cases:
Case (i) for a variety percent of censored observations (10, 20 and 30 %) and
Case (ii) for different sample sizes (n = 200, 400 and 600).
 We compute the sample means (SMs) and mean squared errors (MSEs) of the esti-
mates for the both Cases (i) and (ii).
Steps 4 Summarize and discuss the simulation results based on 1000 repetition.

Simulation output analysis

The simulation results are shown in Tables 4 and 5.
Tables 4 and 5 present the summary results of the simulations based on 1000 repeti-

tions under the given true values. In these tables, the first column shows the parame-
ters of the model and second column shows the true values of the parameters. Tables 4 
and 5 give the sample means of the MLEs of parameters obtained by the EM algorithm. 

Table 4 Sample means of the MLEs for different percent of censored observations

Parameters True values Sample means of the MLEs

Set-01 [N = 200;  
10 % cens. obs.]

Set-02 [N = 200;  
20 % cens. Obs.]

Set-03 [N = 200; 
30 % cens. Obs.]

β̂1 3.50 3.7945 3.9587 4.1968

α̂1 700.00 699.3536 700.1768 705.3863

β̂2 1.20 1.1601 1.1454 1.1709

α̂2 850.00 944.5603 1055.9218 912.0363

p̂ 0.30 0.3737 0.3692 0.3732
(

1− p̂
)

0.70 0.6263 0.6308 0.6268
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For all of the sets, the sample means of the estimated parameters are close to the cor-
responding true values of the parameters. If the percent of censored observations 
decrease (i.e., if number of failures increase), the sample means of the MLEs become 
more closers to the true values for all most all sets, as expected. Similarly, the sample 
means of the MLEs become more closers to the true values for increasing sample sizes.

The mean squared errors (MSEs) of the MLEs of parameters for different percent of 
censored observations and for different sample sizes are given in Tables 6 and 7, respec-
tively. The MSEs decrease for decreasing of the percent of censored observations (i.e., for 
increasing the number of failures). Also the MSEs decrease for increasing of the sample 

Table 5 Sample means of the MLEs for different sample sizes

Parameters True values Sample means of the MLEs

Set-04 [N = 200;  
20 % cens. obs.]

Set-05 [N = 400;  
20 % cens. obs.]

Set-06 [N = 600; 
20 % cens. obs.]

β̂1 3.50 3.9587 3.8619 3.8365

α̂1 700.00 700.1768 703.0983 702.2486

β̂2 1.20 1.1454 1.1664 1.1850

α̂2 850.00 1055.9218 891.5291 873.1364

p̂ 0.30 0.3692 0.3398 0.3192
(

1− p̂
)

0.70 0.6308 0.6602 0.6808

Table 6 Mean squared errors for different percent of censored observations

Parameters True values Mean squared errors (MSEs) of MLEs

Set-01 [N = 200;  
10 % cens. obs.]

Set-02 [N = 200;  
20 % cens. obs.]

Set-03 [N = 200; 
30 % cens. obs.]

β̂1 3.50 2.17953 2.6223 4.2156

α̂1 700.00 3232.01855 4873.0835 9777.0312

β̂2 1.20 0.15011 0.0619 0.0711

α̂2 850.00 87452.76431 1614229.0410 269,062.7034

p̂ 0.30 0.00114 0.0391 0.0500
(

1− p̂
)

0.70 0.03382 0.0391 0.0500

Table 7 Mean squared errors for different sample sizes

Parameters True values Mean squared errors (MSEs) of MLEs

Set-04 [N = 200;  
20 % cens. obs.]

Set-05 [N = 400;  
20 % cens. obs.]

Set-06 [N = 600; 
20 % cens. obs.]

β̂1 3.50 2.6223 1.9544 1.5033

α̂1 700.00 4873.0835 1907.8766 1574.6524

β̂2 1.20 0.0619 0.0294 0.0210

α̂2 850.00 1614229.0410 25655.13287 10622.3852

p̂ 0.30 0.0391 0.0242 0.0159
(

1− p̂
)

0.70 0.0391 0.0242 0.0159
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sizes. These comparisons indicate that the proposed method of estimation is applicable 
for analyzing mixture model for censored data.

Conclusion
There are situations where variations in product reliability can be occurred across 
different component vendors. In such situations, mixture of distributions can model 
the variability resulting from parts being bought from K different suppliers with Fk(t) 
denoting the failure distribution for parts obtained from supplier k, k = 1, 2, . . . ,K  . 
This paper has applied a twofold Weibull mixture model for analyzing product reli-
ability data with failure and censored observations. It has proposed the Expecta-
tion–Maximization (EM) algorithm to find the maximum likelihood estimates of 
the parameters of mixture model and compared this method with a method based 
on Weibull Probability Paper plots. An aircraft component (Windshield) failure 
data is analyzed as an example and investigated that the performance of the pro-
posed method of estimation is impressive. The results would be useful for manage-
rial implications in assessing and predicting the reliability of the component more 
accurately.

The mixture model considered here is the twofold Weibull mixture model. The pro-
posed method is easily extendable for other mixture models also. A scope of the future 
research with other mixture models and with various types of censored data would be 
interesting.
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# ----- Weibull-Weibull Mixture model - parameters estimation - via EM algorithm
# The program requires package “survival”. In these codes -
# t:     Failure time or right censored time
# d:     Failure/Censored indicator, 1=failure, 0=censored 
# theta: Parameter vector, {beta1, alpha1, beta2, alpha2, p1, p2}
#
# ----------------- Observed data log-likelihood function -----
loglik.obs <- function(t, d, theta){

sum(d*log(theta[5]*dweibull(t, shape=theta[1], scale =theta[2], log = FALSE) 
+ theta[6]*dweibull(t, shape=theta[3], scale =theta[4], log = FALSE))

+(1-d)*log(theta[5]*(1-pweibull(t, shape=theta[1], scale=theta[2], lower.tail=TRUE, log.p=FALSE))
+ theta[6]*(1-pweibull(t, shape=theta[3], scale =theta[4], lower.tail = TRUE, log.p =  FALSE))))

}

# -- Function for MLEs of the parameters of Weibull-Weibull mixture model ----
# t:   Failure time or right censored time
# d:      Failure/Censored indicator, 1=failure, 0=censored 
# theta:   Initial values of Parameter vector, {beta1, alpha1, beta2, alpha2, p1, p2}
# em.tiny: A small value to stop EM iteration
#----------------------------------------------------------------------
WeibWeibMix <- function(t, d, theta, em.tiny){ 
n <- length(t)                       
K <- 2          
change.lik <- 0.05                 
maxi.em.rep <- 500
em.rep <- 1  

fjti <- matrix(0, nrow = n, ncol = K)                 
loglik.obs <- array()
loglik.obs.old <- loglik.obs(t, d, theta)  

#--------------------------------- Iteration for EM algorithm -------------------------------------------
while(change.lik > em.tiny && em.rep <= maxi.em.rep) {
# ----------------------------------- E-step: Computation of  f(ti|j) as matrix or say pij ---------------

tempj1.f <- dweibull(t, shape=theta[1], scale =theta[2], log = FALSE) 
tempj2.f <- dweibull(t, shape=theta[3], scale =theta[4], log = FALSE) 
tempj1.c <- (1-pweibull(t, shape=theta[1], scale =theta[2], lower.tail = TRUE, log.p = FALSE))
tempj2.c <- (1-pweibull(t, shape=theta[3], scale =theta[4], lower.tail = TRUE, log.p = FALSE))

fjti[ , 1] <- (theta[5]*tempj1.f/(theta[5]*tempj1.f + theta[6]*tempj2.f))^d* (theta[5]*tempj1.c/
(theta[5]*tempj1.c + theta[6]*tempj2.c))^(1-d)

fjti[ , 2] <- (theta[6]*tempj2.f/(theta[5]*tempj1.f + theta[6]*tempj2.f))^d*(theta[6]*tempj2.c/
(theta[5]*tempj1.c + theta[6]*tempj2.c))^(1-d)

#-------------------------------------- M-step ---------------------------------------------------------
p1 <- sum(fjti[, 1])/n # MLE of p1 
p2 <- sum(fjti[, 2])/n # MLE of p2
# -------- To change if f(j|ti) is zero --------------
small.value <- 10^(-8)  
for(ii in 1:n){
if(fjti[ii, 1] < small.value){

fjti[ii, 1] <- small.value;  fjti[ii, 2] <- 1 - small.value
}

}
for(jj in 1:n){
if(fjti[jj, 2] < small.value){

fjti[jj, 2] <- small.value; fjti[jj, 1] <- 1 - small.value
}

}
pi1 <- fjti[ , 1]
pi2 <- fjti[ , 2]

# --------------- MLEs of main parameters, except p, via survreg command ---------------
fit1 <- survreg(Surv(t, d) ~ 1, weight = pi1, dist='weibull')  # Fit of Weibull for sub-population 1 
beta1.hat  <- 1/fit1$scale
eta1.hat <- exp(fit1$coefficient)

fit2 <- survreg(Surv(t, d) ~ 1, weight = pi2, dist='weibull')  # Fit of Weibull for sub-population 2
beta2.hat  <- 1/fit2$scale
eta2.hat <- exp(fit2$coefficient)

theta  <- c(beta1.hat, eta1.hat, beta2.hat, eta2.hat, p1, p2)  # Updated MLEs  

loglik.obs[em.rep] <- loglik.obs(t, d, theta)  # Updated observed data log-likelihood 

change.lik <- abs(loglik.obs[em.rep] - loglik.obs.old)    
loglik.obs.old <- loglik.obs[em.rep]
em.rep <- em.rep + 1                                                          
}                                                                             
if(em.rep >= maxi.em.rep) {print("Algorithm did NOT converge")} # warning message if do not 
converge
#------- End of E & M-steps  ----------------------------
return(list(beta1=theta[1], alpha1=theta[2], beta2=theta[3], alpha2=theta[4], p1=theta[5],p2=theta[6])) 
}
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