2,304 research outputs found

    Adult tissue-derived neural crest‐like stem cells: Sources, regulatory networks, and translational potential: Concise review

    Get PDF
    Neural crest (NC) cells are a multipotent stem cell population that gives rise to a diverse array of cell types in the body, including peripheral neurons, Schwann cells (SC), craniofacial cartilage and bone, smooth muscle cells, and melanocytes. NC formation and differentiation into specific lineages takes place in response to a set of highly regulated signaling and transcriptional events within the neural plate border. Pre‐migratory NC cells initially are contained within the dorsal neural tube from which they subsequently emigrate, migrating to often distant sites in the periphery. Following their migration and differentiation, some NC‐like cells persist in adult tissues in a nascent multipotent state, making them potential candidates for autologous cell therapy. This review discusses the gene regulatory network responsible for NC development and maintenance of multipotency. We summarize the genes and signaling pathways that have been implicated in the differentiation of a post‐migratory NC into mature myelinating SC. We elaborate on the signals and transcription factors involved in the acquisition of immature SC fate, axonal sorting of unmyelinated neuronal axons, and finally the path toward mature myelinating SC, which envelope axons within myelin sheaths, facilitating electrical signal propagation. The gene regulatory events guiding development of SC in‐vivo provides insights into means for differentiating NC‐like cells from adult human tissues into functional SC, which have the potential to provide autologous cell sources for the treatment of demyelinating and neurodegenerative disorders

    Dissecting early regulatory relationships in the lamprey neural crest gene network

    Get PDF
    The neural crest, a multipotent embryonic cell type, originates at the border between neural and nonneural ectoderm. After neural tube closure, these cells undergo an epithelial–mesenchymal transition, migrate to precise, often distant locations, and differentiate into diverse derivatives. Analyses of expression and function of signaling and transcription factors in higher vertebrates has led to the proposal that a neural crest gene regulatory network (NC-GRN) orchestrates neural crest formation. Here, we interrogate the NC-GRN in the lamprey, taking advantage of its slow development and basal phylogenetic position to resolve early inductive events, 1 regulatory step at the time. To establish regulatory relationships at the neural plate border, we assess relative expression of 6 neural crest network genes and effects of individually perturbing each on the remaining 5. The results refine an upstream portion of the NC-GRN and reveal unexpected order and linkages therein; e.g., lamprey AP-2 appears to function early as a neural plate border rather than a neural crest specifier and in a pathway linked to MsxA but independent of ZicA. These findings provide an ancestral framework for performing comparative tests in higher vertebrates in which network linkages may be more difficult to resolve because of their rapid development

    Controlled Morphological Arrangement of Anisotropic Nanoparticles via Oxidation or Ionic Cross-Linking

    Get PDF
    For a long time, researchers in nanochemistry have been exploring ways to create 3D structures using cross-linked nanoparticles, such as lyogels and aerogels. In the present work, how simple modifications to the nanoparticle surface can be used to influence the resulting structure in a targeted manner is demonstrated. Specifically, positively charged surface ligands containing amine groups are compared to negatively charged ligands typically used, containing carboxylic acid groups, to generate network structures using different gelation agents. By utilizing bridging through S2− ions, a network structure of anisotropic CdSe/CdS nanorods is generated, packing them side by side at the nanoscopic level. The resulting structures exhibit improved fluorescence properties comparable to those of tip-to-tip connected networks but without harsh conditions for the nanoparticle surfaces. This innovative new method of gelation using S2− ions can achieve adequate photoluminescence quantum yields as well as prolonged fluorescence lifetimes compared to other network structures

    Evidence for the prepattern/cooption model of vertebrate jaw evolution

    Get PDF
    The appearance of jaws was a turning point in vertebrate evolution because it allowed primitive vertebrates to capture and process large, motile prey. The vertebrate jaw consists of separate dorsal and ventral skeletal elements connected by a joint. How this structure evolved from the unjointed gill bar of a jawless ancestor is an unresolved question in vertebrate evolution. To understand the developmental bases of this evolutionary transition, we examined the expression of 12 genes involved in vertebrate pharyngeal patterning in the modern jawless fish lamprey. We find nested expression of Dlx genes, as well as combinatorial expression of Msx, Hand and Gsc genes along the dorso-ventral (DV) axis of the lamprey pharynx, indicating gnathostome-type pharyngeal patterning evolved before the appearance of the jaw. In addition, we find that Bapx and Gdf5/6/7, key regulators of joint formation in gnathostomes, are not expressed in the lamprey first arch, whereas Barx, which is absent from the intermediate first arch in gnathostomes, marks this domain in lamprey. Taken together, these data support a new scenario for jaw evolution in which incorporation of Bapx and Gdf5/6/7 into a preexisting DV patterning program drove the evolution of the jaw by altering the identity of intermediate first-arch chondrocytes. We present this “Pre-pattern/Cooption” model as an alternative to current models linking the evolution of the jaw to the de novo appearance of sophisticated pharyngeal DV patterning

    Regulative response of the cranial neural tube after neural fold ablation: spatiotemporal nature of neural crest regeneration and up-regulation of Slug

    Get PDF
    After unilateral ablation of the avian cranial neural folds, the remaining neuroepithelial cells are able to replace the missing neural crest population (Scherson et al., 1993). Here, we characterize the cellular and molecular nature of this regulative response by defining: (1) the time and location of neural crest cell production by the neuroepithelium; (2) rostrocaudal axial differences in the regulative response; and (3) the onset of expression of Slug, a transcription factor present in premigratory and migrating neural crest cells. Using DiI and HNK-1 antibody labeling techniques, we find that neural crest regeneration occurs only after apposition of the remaining neuroepithelium with the epidermis, suggesting that the developmental mechanism underlying regeneration of the neural crest may recapitulate initial generation of the neural crest. The regulative response occurs maximally at the 3–5 somite stage, and slowly declines thereafter. Surprisingly, there are profound regional differences in the regenerative ability. Whereas a robust regulation occurs in the caudal midbrain/hindbrain, the caudal forebrain/rostral midbrain regenerates neural crest to a much lesser extent. After neural fold removal in the hindbrain, regenerated neural crest cells migrate in a segmental pattern analogous to that seen in unablated embryos; a decrease in regulative response appears to occur with increasing depth of the ablation. Up-regulation of Slug appears to be an early response after ablation, with Slug transcripts detectable proximal to the ablated region 5–8 hours after surgery and prior to emergence of neural crest cells. Both bilateral and unilateral ablations yield substantial numbers of neural crest cells, though the former recover less rapidly and have greater deficits in neural crest-derived structures than the latter. These experiments demonstrate that the regulative ability of the cranial neuroepithelium to form neural crest depends on the time, location and extent of neural fold ablation
    corecore