25 research outputs found

    Soil and seedling response to dehydrated septic tank sludge versus forest floor additions at a disturbed site

    Get PDF
    Over a period of 2 yr, the effects of dehydrated septic tank sludge application on the chemical properties of a severely disturbed forest clayey soil were assessed and compared with application of native forest floor (i.e., from neighboring forest). Six treatments [fresh and mature sludges × two depths (15 and 25 cm), forest floor, and a control] were replicated three times according to a complete random design. Total organic C and N concentrations of amendments and their chemical structure, based on 13C nuclear magnetic resonance (NMR) spectroscopy, were determined. Mineral soil C and N concentrations and C mineralization rates were monitored as well as nutrient supply rates using Plant Root Simulator™ probes. White spruce [Picea glauca (Moench) Voss] seedling foliar nutrition and growth were also monitored. NMR spectroscopy revealed differences among amendments, with the forest floor spectra displaying lower O-alkyl C and higher alkyl C and carbonyl C proportions relative to sludge. Neither soil C concentrations nor mineralization were significantly improved in the mineral soil under any treatment, even at application rates exceeding 700 t sludge ha−1 (dry mass). The sludges supplied more NO3 and P, and less NH4 and K to the mineral soil than the forest floor and control. Increased nutrient availability under sludge and forest floor generally resulted in improved foliar nutrition and growth of white spruce seedlings. Despite differences in organic matter quality and mineral N form supplied by sludge and forest floor, sludge application is a valid restoration approach

    On the road to 'research municipalities' : analysing transdisciplinarity in municipal ecosystem services and adaptation planning

    No full text
    Transdisciplinary research and collaboration is widely acknowledged as a critical success factor for solution-oriented approaches that can tackle complex sustainability challenges, such as biodiversity loss, pollution, and climate-related hazards. In this context, city governments' engagement in transdisciplinarity is generally seen as a key condition for societal transformation towards sustainability. However, empirical evidence is rare. This paper presents a self-assessment of a joint research project on ecosystem services and climate adaptation planning (ECOSIMP) undertaken by four universities and seven Swedish municipalities. We apply a set of design principles and guiding questions for transdisciplinary sustainability projects and, on this basis, identify key aspects for supporting university-municipality collaboration. We show that: (1) selecting the number and type of project stakeholders requires more explicit consideration of the purpose of societal actors' participation; (2) concrete, interim benefits for participating practitioners and organisations need to be continuously discussed; (3) promoting the 'inter', i.e., interdisciplinary and inter-city learning, can support transdisciplinarity and, ultimately, urban sustainability and long-term change. In this context, we found that design principles for transdisciplinarity have the potential to (4) mitigate project shortcomings, even when transdisciplinarity is not an explicit aim, and (5) address differences and allow new voices to be heard. We propose additional guiding questions to address shortcomings and inspire reflexivity in transdisciplinary projects
    corecore