1,144 research outputs found

    Rat Pancreatic Nucleoside Diphosphate Kinase, a Novel Regulator of Cholecystokinin Receptor Affinity

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72322/1/j.1749-6632.1994.tb44089.x.pd

    Increased systemic inflammation is associated with cardiac and vascular dysfunction over the first 12 weeks of antiretroviral therapy among undernourished, HIV-infected adults in Southern Africa.

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.INTRODUCTION: Persistent systemic inflammation is associated with mortality among undernourished, HIV-infected adults starting antiretroviral therapy (ART) in sub-Saharan Africa, but the etiology of these deaths is not well understood. We hypothesized that greater systemic inflammation is accompanied by cardiovascular dysfunction over the first 12 weeks of ART. METHODS: In a prospective cohort of 33 undernourished (body mass index <18.5 kg/m2) Zambian adults starting ART, we measured C-reactive protein (CRP), tumor necrosis factor-α receptor 1 (TNF-α R1), and soluble CD163 and CD14 at baseline and 12 weeks. An EndoPAT device measured the reactive hyperemia index (LnRHI; a measure of endothelial responsiveness), peripheral augmentation index (AI; a measure of arterial stiffness), and heart rate variability (HRV; a general marker of autonomic tone and cardiovascular health) at the same time points. We assessed paired changes in inflammation and cardiovascular parameters, and relationships independent of time point (adjusted for age, sex, and CD4+ T-cell count) using linear mixed models. RESULTS: Serum CRP decreased (median change -3.5 mg/l, p=0.02), as did TNF-α R1 (-0.31 ng/ml, p<0.01), over the first 12 weeks of ART. A reduction in TNF-α R1 over 12 weeks was associated with an increase in LnRHI (p=0.03), and a similar inverse relationship was observed for CRP and LnRHI (p=0.07). AI increased in the cohort as a whole over 12 weeks, and a reduction in sCD163 was associated with a rise in the AI score (p=0.04). In the pooled analysis of baseline and 12 week data, high CRP was associated with lower HRV parameters (RMSSD, p=0.01; triangular index, p<0.01), and higher TNF- α R1 accompanied lower HRV (RMSSD, p=0.07; triangular index, p=0.06). CONCLUSIONS: Persistent inflammation was associated with impaired cardiovascular health over the first 12 weeks of HIV treatment among undernourished adults in Africa, suggesting cardiac events may contribute to high mortality in this population.This work was supported by the Vanderbilt Meharry Center for AIDS Research (NIH grant number P30 AI54999); the NIH Fogarty International Center, Office of the Director, National Institutes of Health, National Heart, Blood, and Lung Institute, and National Institute of Mental Health, through the Vanderbilt-Emory-Cornell-Duke Consortium for Global Health Fellows (grant number R25 TW009337); the National Center for Advancing Translational Sciences (CTSA award number UL1TR000445) and the European and Developing Countries Clinical Trials Partnership (grant IP.2009.33011.004)

    Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Vectored Nozzles

    Get PDF
    Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-foot Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Results show how the shock generated at the nozzle lip affects the near field pressure signature, and thereby the potential sonic boom contribution for a nozzle at vector angles from 3 to 8 . The experiment was based on the NASA F-15 nozzle used in the Lift and Nozzle Change Effects on Tail Shock experiment, which possessed a large external boat-tail angle. In this case, the large boat-tail angle caused a dramatic expansion, which dominated the near field pressure signature. The impact of nozzle vector angle and nozzle pressure ratio are summarized

    Mannose binding lectin is required for alphavirus-induced arthritis/myositis

    Get PDF
    Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus (RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is associated with induction of the host inflammatory response within the muscle and joints, and prior studies have demonstrated that the host complement system contributes to development of disease. In this study, we have used a mouse model of RRV-induced disease to identify and characterize which complement activation pathways mediate disease progression after infection, and we have identified the mannose binding lectin (MBL) pathway, but not the classical or alternative complement activation pathways, as essential for development of RRV-induced disease. MBL deposition was enhanced in RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice exhibited reduced disease, tissue damage, and complement deposition compared to wild-type mice. In contrast, mice deficient for key components of the classical or alternative complement activation pathways still developed severe RRV-induced disease. Further characterization of MBL deficient mice demonstrated that similar to C3(-/-) mice, viral replication and inflammatory cell recruitment were equivalent to wild type animals, suggesting that RRV-mediated induction of complement dependent immune pathology is largely MBL dependent. Consistent with these findings, human patients diagnosed with RRV disease had elevated serum MBL levels compared to healthy controls, and MBL levels in the serum and synovial fluid correlated with severity of disease. These findings demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans and suggest that the MBL pathway of complement activation may be an effective target for therapeutic intervention for humans suffering from RRV-induced arthritis and myositis.This work was supported by NIH/NIAMS R01 AR 047190 awarded to MTH

    Fixed-ratio combination of insulin degludec and liraglutide (IDegLira) improves cardiovascular risk markers in patients with type 2 diabetes uncontrolled on basal insulin

    Get PDF
    In this post hoc analysis we investigated the effects of insulin degludec/liraglutide fixed-ratio combination (IDegLira) versus comparators on cardiovascular (CV) risk markers in participants in the DUAL II (vs. insulin degludec), DUAL V (vs. insulin glargine 100 units/mL) and DUAL VII (vs. basal-bolus therapy) trials, grouped by sex, age (<65 years, ≥65 years) and diabetes duration (<10 years, ≥10 years). Treatment contrasts were in favour of IDegLira in many subgroups for changes from baseline in glycated haemoblogin (DUAL II, DUAL V), body weight (all three trials), systolic blood pressure (BP; all three trials), HDL cholesterol (DUAL VII) and LDL cholesterol (DUAL II, DUAL V). Higher heart rates were seen with IDegLira versus comparators (all three trials) plus significantly higher diastolic BP in men (DUAL V). Differences in treatment effect were seen between sexes in waist circumference (DUAL II), systolic BP (DUAL II, DUAL V) and triglycerides (DUAL VII), and between diabetes durations in LDL cholesterol (DUAL V). In conclusion, IDegLira is associated with a general improvement in CV risk markers compared with basal insulin or basal-bolus therapy after 26 weeks of treatment

    Interaction of reed and acoustic resonator in clarinetlike systems

    Full text link
    Sound emergence in clarinetlike instruments is investigated in terms of instability of the static regime. Various models of reed-bore coupling are considered, from the pioneering work of Wilson and Beavers ["Operating modes of the clarinet", J. Acoust. Soc. Am. 56, 653--658 (1974)] to more recent modeling including viscothermal bore losses and vena contracta at the reed inlet. The pressure threshold above which these models may oscillate as well as the frequency of oscillation at threshold are calculated. In addition to Wilson and Beavers' previous conclusions concerning the role of the reed damping in the selection of the register the instrument will play on, the influence of the reed motion induced flow is also emphasized, particularly its effect on playing frequencies, contributing to reduce discrepancies between Wilson and Beavers' experimental results and theory, despite discrepancies still remain concerning the pressure threshold. Finally, analytical approximations of the oscillating solution based on Fourier series expansion are obtained in the vicinity of the threshold of oscillation. This allows to emphasize the conditions which determine the nature of the bifurcation (direct or inverse) through which the note may emerge, with therefore important consequences on the musical playing performances

    The Disease Triangle as a Reusable Learning Object

    Get PDF
    The disease triangle is a widely used, practical conceptual model for teaching basic plant pathology. The concept is often used as a springboard to introduce students to advanced concepts on how diseases develop and the significance of plant diseases in the environment. This article describes development and recommended usage of an interactive learning object entitled "The Disease Triangle." This object provides three levels of instruction on the disease triangle concept, along with appropriate user activities, including concept mapping, and assessments. Research skills instruction to enhance further application of the concept is also recommended.This project was funded in part by the Ohio Board of Regents grant to Ohio State University Technology Enhanced Learning and Research (TELR

    The NRPD1 N-terminus contains a Pol IV-specific motif that is critical for genome surveillance in Arabidopsis

    Get PDF
    RNA-guided surveillance systems constrain the activity of transposable elements (TEs) in host genomes. In plants, RNA polymerase IV (Pol IV) transcribes TEs into primary transcripts from which RDR2 synthesizes double-stranded RNA precursors for small interfering RNAs (siRNAs) that guide TE methylation and silencing. How the core subunits of Pol IV, homologs of RNA polymerase II subunits, diverged to support siRNA biogenesis in a TE-rich, repressive chromatin context is not well understood. Here we studied the N-terminus of Pol IV’s largest subunit, NRPD1. Arabidopsis lines harboring missense mutations in this N-terminus produce wild-type (WT) levels of NRPD1, which co-purifies with other Pol IV subunits and RDR2. Our in vitro transcription and genomic analyses reveal that the NRPD1 N-terminus is critical for robust Pol IV-dependent transcription, siRNA production and DNA methylation. However, residual RNA-directed DNA methylation observed in one mutant genotype indicates that Pol IV can operate uncoupled from the high siRNA levels typically observed in WT plants. This mutation disrupts a motif uniquely conserved in Pol IV, crippling the enzyme's ability to inhibit retrotransposon mobilization. We propose that the NRPD1 N-terminus motif evolved to regulate Pol IV function in genome surveillance
    • …
    corecore