96 research outputs found

    Photodetachment and photoreactions of substituted naphthalene anions in a tandem ion mobility spectrometer

    Get PDF
    Substituted naphthalene anions (deprotonated 2-naphthol and 6-hydroxy-2-naphthoic acid) are spectroscopically probed in a tandem drift tube ion mobility spectrometer (IMS). Target anions are selected according to their drift speed through nitrogen buffer gas in the first IMS stage before being exposed to a pulse of tunable light that induces either photodissociation or electron photodetachment, which is conveniently monitored by scavenging the detached electrons with trace SF6 in the buffer gas. The photodetachment action spectrum of the 2-naphtholate anion exhibits a band system spanning 380-460 nm with a prominent series of peaks spaced by 440 cm-1, commencing at 458.5 nm, and a set of weaker peaks near the electron detachment threshold corresponding to transitions to dipole-bound states. The two deprotomers of 6-hydroxy-2-naphthoic acid are separated and spectroscopically probed independently. The molecular anion formed from deprotonation of the hydroxy group gives rise to a photodetachment action spectrum similar to that of the 2-naphtholate anion with an onset at 470 nm and a maximum at 420 nm. Near the threshold, the photoreaction with SF6 is observed with displacement of an OH group by an F atom. In contrast, the anion formed from deprotonation of the carboxylic acid group gives rise to a photodissociation action spectrum, recorded on the CO2 loss channel, lying at much shorter wavelengths with an onset at 360 nm and maximum photoresponse at 325 nm

    Photo- and Collision-Induced Isomerization of a Charge-Tagged Norbornadiene–Quadricyclane System

    Get PDF
    Molecular photoswitches based on the norbornadiene-quadricylane (NBD-QC) couple have been proposed as key elements of molecular solar thermal energy storage schemes. To characterize the intrinsic properties of such systems, reversible isomerization of a charge-tagged NBD-QC carboxylate couple is investigated in a tandem ion mobility mass spectrometer, using light to induce intramolecular [2 + 2] cycloaddition of NBD carboxylate to form the QC carboxylate and driving the back reaction with molecular collisions. The NBD carboxylate photoisomerization action spectrum recorded by monitoring the QC carboxylate photoisomer extends from 290 to 360 nm with a maximum at 315 nm, and in the longer wavelength region resembles the NBD carboxylate absorption spectrum recorded in solution. Key structural and photochemical properties of the NBD-QC carboxylate system, including the gas-phase absorption spectrum and the energy storage capacity, are determined through computational studies using density functional theory

    Photoisomerization of linear and stacked isomers of a charged styryl dye – a tandem ion mobility study

    Get PDF
    The photoisomerization behavior of styryl 9M, a common dye used in material sciences, is investigated using tandem ion mobility spectrometry (IMS) coupled with laser spectroscopy. Styryl 9M has two alkene linkages, potentially allowing for four geometric isomers. IMS measurements demonstrate that at least three geometric isomers are generated using electrospray ionization with the most abundant forms assigned to a combination of EE (major) and ZE (minor) geometric isomers, which are difficult to distinguish using IMS as they have similar collision cross sections. Two additional but minor isomers are generated by collisional excitation of the electrosprayed styryl 9M ions and are assigned to the EZ and ZZ geometric isomers, with the latter predicted to have a π-stacked configuration. The isomer assignments are supported through calculations of equilibrium structures, collision cross sections, and statistical isomerization rates. Photoexcitation of selected isomers using an IMS-photo-IMS strategy shows that each geometric isomer photoisomerizes following absorption of near-infrared and visible light, with the EE isomer possessing a S1 ← S0 electronic transition with a band maximum near 680 nm and shorter wavelength S2 ← S0 electronic transition with a band maximum near 430 nm. The study demonstrates the utility of the IMS-photo-IMS strategy for providing fundamental gas-phase photochemical information on molecular systems with multiple isomerizable bonds

    Near-infrared reversible photoswitching of an isolated azobenzene-stilbene dye

    Get PDF
    Photoswitching of a charged azobenzene-stilbene dye is investigated through laser excitation in a tandem ion mobility mass spectrometer. Action spectra associated with E→Z and Z→E photoisomerisation of the stilbene group exhibit bands at 685 and 440 nm, corresponding to S1←S0 and S3←S0 transitions, respectively. The data suggest that isomers possessing a Z configuration of the azobenzene unit rapidly convert to E isomers and are not discernible using ion mobility spectrometry, and that photoisomerisation occurs through excited state dynamics rather than statistical isomerisation on the ground state potential energy surface

    Infrared Spectra of Mass-Selected Br¯−(NH_3)_n and I¯−NH_3 Clusters

    Get PDF
    Infrared vibrational predissociation spectra are recorded for Br¯−(NH_3)_n (n = 1−4) and I¯−NH_3 clusters in the N−H stretch region (3040−3460 cm^(−1)). To aid spectral assignments and clarify structures of the Br¯−(NH_3)_n clusters, ab initio calculations are performed at the MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ levels of theory. The Br¯−NH_3 and I¯−NH_3 dimers are predicted to have structures in which the NH_3 molecule is attached to the halide anion by a single hydrogen-bond. The dominant infrared band for Br¯−NH_3 at 3171 cm^(−1) corresponds to a hydrogen-bonded N−H stretch vibrational mode, whereas two weaker bands are assigned to a symmetric stretch vibration of the nonbonded N−H groups (3347 cm^(−1)) and to an ammonia-based bending overtone (3293 cm^(−1)) deriving infrared intensity through Fermi interaction with the H-bonded N−H stretch mode. The corresponding I¯−NH3 spectrum is dominated by the H-bonded N−H stretch band at 3217 cm^(−1), with three weaker bands at 3240, 3305, and 3360 cm^(−1) assigned to two bending overtone vibrations and the nonbonded N−H symmetric stretch vibration, respectively. Spectra of the Br¯−(NH_3)_n, n = 2−4, clusters are similar to the I¯−NH_3 spectrum, exhibiting evidence for strong Fermi interactions between the H-bonded N−H stretch vibrational mode and ammonia-based bending overtones. On the basis of the infrared spectra and ab initio calculations, the larger Br¯−(NH_3)_n clusters are deduced to have structures in which the NH_3 molecules are attached to the Br¯ by single H-bonds, but not necessarily to one other

    Electronic spectra of positively charged carbon clusters - C2n+ (n=6-14)

    Get PDF
    Electronic spectra are measured for mass-selected C+2( = 6–14) clusters over the visible and near-infrared spectral range through resonance enhanced photodissociation of clusters tagged with N2 molecules in a cryogenic ion trap. The carbon cluster cations are generated through laser ablation of a graphite disk and can be selected according to their collision cross section with He buffer gas and their mass prior to being trapped and spectroscopically probed. The data suggest that the C+2( = 6–14) clusters have monocyclic structures with bicyclic structures becoming more prevalent for C+22 and larger clusters. The C+2 electronic spectra are dominated by an origin transition that shifts linearly to a longer wavelength with the number of carbon atoms and associated progressions involving excitation of ring deformation vibrational modes. Bands for C+12, C+16, C+20, C+24, and C+28 are relatively broad, possibly due to rapid non-radiative decay from the excited state, whereas bands for C+14, C+18, C+22, and C+26 are narrower, consistent with slower non-radiative deactivation

    An ion mobility mass spectrometer coupled with a cryogenic ion trap for recording electronic spectra of charged, isomer-selected clusters

    Get PDF
    Infrared and electronic spectra are indispensable for understanding the structural and energetic properties of charged molecules and clusters in the gas phase. However, the presence of isomers can potentially complicate the interpretation of spectra, even if the target molecules or clusters are mass-selected beforehand. Here, we describe an instrument for spectroscopically characterizing charged molecular clusters that have been selected according to both their isomeric form and their mass-to-charge ratio. Cluster ions generated by laser ablation of a solid sample are selected according to their collision cross sections with helium buffer gas using a drift tube ion mobility spectrometer and their mass-to-charge ratio using a quadrupole mass filter. The mobility- and mass-selected target ions are introduced into a cryogenically cooled, three-dimensional quadrupole ion trap where they are thermalized through inelastic collisions with an inert buffer gas (He or He/N2 mixture). Spectra of the molecular ions are obtained by tagging them with inert atoms or molecules (Ne and N2), which are dislodged following resonant excitation of an electronic transition, or by photodissociating the cluster itself following absorption of one or more photons. An electronic spectrum is generated by monitoring the charged photofragment yield as a function of wavelength. The capacity of the instrument is illustrated with the resonance-enhanced photodissociation action spectra of carbon clusters (Cn+) and polyacetylene cations (HC2nH+) that have been selected according to the mass-to-charge ratio and collision cross section with He buffer gas and of mass-selected Au2+ and Au2Ag+ clusters

    Potential theory results for a class of PDOs admitting a global fundamental solution

    Get PDF
    We outline several results of Potential Theory for a class of linear par-tial differential operators L of the second order in divergence form. Under essentially the sole assumption of hypoellipticity, we present a non-invariant homogeneous Harnack inequality for L; under different geometrical assumptions on L (mainly, under global doubling/Poincar\ue9 assumptions), it is described how to obtainan invariant, non-homogeneous Harnack inequality. When L is equipped with a global fundamental solution \u393, further Potential Theory results are available (such as the Strong Maximum Principle). We present some assumptions on L ensuring that such a \u393 exists
    • 

    corecore