1

Supplementary Information

"Infrared spectra of mass-selected $Br^{-}(NH_3)_n$ and $I^{-}(NH_3)_n$ clusters" D.A. Wild, K. Kuwata, M. Okumura, E.J. Bieske

Table 1. Data for Br⁻, NH₃ and Br⁻-NH₃ at MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ levels. Listed are optimized internal coordinates (*r* in Å, $\boldsymbol{\theta}$ in degrees), harmonic vibrational frequencies ($\boldsymbol{\omega}$ in cm⁻¹, intensities in km/mol in brackets), zpe (in kcal/mol), electronic energies (E in au), dissociation energy (D_0 in cm⁻¹), and enthalpy change for association reaction at 298K ($\Delta H_{0 \rightarrow 1}^{298}$ in kcal/mol). H_b refers to H-bonded hydrogen atoms and H_t to terminal hydrogen atoms.

	MP2/aug-cc-pVDZ	MP2/aug-cc-pVTZ	Vibrational mode description
		Br ⁻ -NH ₃	
$r(Br-H_b)$	2.569	2.484	
$r(N-H_b)$	1.033	1.028	
$r(N-H_t)$	1.022	1.014	
$\theta(Br - H_b - N)$	167.2	168.7	
θ (H _b -N-H _t)	103.9	104.4	
θ (H _t -N-H _t)	104.7	105.1	
$\omega_1(a')$	3533 (62)	3543 (46)	free sym. NH stretch
$\omega_2(a')$	3361 (310)	3339 (418)	IHB NH stretch
$\omega_3(a')$	1638 (18)	1656 (20)	NH ₃ bend
$\omega_4(a')$	1171 (95)	1169 (91)	NH ₃ umbrella
$\omega_5(a')$	293 (48)	312 (49)	intermol. bend
$\omega_6(a')$	126 (8)	138 (8)	intermol. stretch
$\omega_7(a'')$	3604 (0*)	3617 (1)	free asym. NH stretch
$\omega_8(a'')$	1670 (1)	1691 (0 [*])	NH ₃ bend
$\omega_9(a")$	228 (20)	236 (17)	intermol. bend
zpe	22.3	22.4	
E_{MP2}	-2629.027164	-2629.249189	
E _{MP2} (BSSE)	-2629.025012	-2629.246904	
D_0	2112	2270	
$\Delta H_{0 \rightarrow 1}^{298}$	-6.5	-7.0	
		NH ₃	
<i>r</i> (N-H) ^a	1.020(+8)	1.012(0)	
θ(H-N-H) ^a	106.3(-4)	106.8(+1)	
$\omega_1(a_1)$	3480 (5)	3503 (3)	sym. NH str.
$\omega_2(a_1)$	1045 (131)	1037 (139)	NH ₃ umbrella
$\omega_3(e)$	3635 (5)	3650 (8)	sym. NH str.
$\omega_4(e)$	1649 (13)	1669 (14)	NH ₃ bend
zpe	21.6	21.7	
E _{MP2}	-56.404890	-56.460541	
		Br⁻	
E _{MP2}	-2572.609288	-2572.774831	

^{*a*} Numbers in parentheses are differences (last significant figure) between these calculated values and experimental values taken from reference ⁴⁴.

* These modes have intensities below 0.5 km/mol, but are IR active.

Supplementary Information

"Infrared spectra of mass-selected $Br^{-}(NH_3)_n$ and $I^{-}(NH_3)_n$ clusters" D.A. Wild, K. Kuwata, M. Okumura, E.J. Bieske

Table 2. Data for Br⁻-(NH₃)₂ isomers calculated at the MP2/aug-cc-pVDZ level. The structures are depicted in Figure 5 of the paper. Listed are internal coordinates (\mathbf{r} in Å, $\boldsymbol{\theta}$ in degrees), zero-point-energies (zpe in kcal/mol), energy differences ($\Delta E_{BSSE/Corr}$ in kcal/mol), and enthalpy change for the association at 298K ($\Delta H_{1\rightarrow2}^{298}$ in kcal/mol). H_b refers to H-bonded hydrogen atoms, H_t to terminal hydrogen atoms, and H_{ba} to hydrogen atoms engaged in an ammonia-ammonia H-bond.

	C_{I}	C_{2h}	C_{2v}
$r(Br-H_b)$	2.675 D	2.583	2.585
	2.528 A		
$r(N-H_b)$	1.030 D	1.032	1.032
	1.033 A		
r(N-H _{ba})	1.024		
$r(H_{ba} \cdots N)$	2.479		
$r(N-H_t)$	1.022 D	1.022	1.022
	1.022 A		
$\theta(Br^{-}-H_{b}-N)$	159.7 D	167.3	166.9
	172.3 A		
θ (H _b -N-H _t)	104.5 D	104.1	104.1
θ (N-H _{ba} -N)	135.2		
θ (H _t -N-H _t)	105.2 A	104.8	104.8
$\theta(H_{b}-Br^{-}-H_{b})$	59.7	180.0	175.7
zpe	45.4	44.7	44.7
E _{MP2}	-2685.446444	-2685.444313	-2685.444246
D_0	2000		
ΔE_{MP2}	0.0	1.34	1.38
$\Delta E_{BSSE/corr}$	0.0	0.2	0.2
$\Delta H_{1 \rightarrow 2}^{298}$	-5.8	-	-

<u>Supplementary Information</u> "Infrared spectra of mass-selected Br⁻- $(NH_3)_n$ and I⁻- $(NH_3)_n$ clusters" D.A. Wild, K. Kuwata, M. Okumura, E.J. Bieske

Table 3. MP2/aug-co	pVDZ harmonic	vibrational	frequencies	(in cm^{-1})	for s	structures	of Br	$-(NH_3)_2$	depicted	in
Figure 5 of the paper.	Also listed are mo	ode symmetr	ries and inten	sities in k	m/mo	ol (in brac	kets).			

	C_1	C_{2h}	C_{2v}
ω1	3608 a (1)	3540 $a_g(0)$	3540 <i>a</i> ₁ (0)
ω2	3597 a (10)	3383 $a_g(0)$	3383 <i>a</i> ₁ (30)
ω3	3535 a (95)	1639 $a_g(0)$	1639 <i>a</i> ₁ (17)
ω4	3531 a (21)	1167 $a_g(0)$	1164 <i>a</i> ₁ (58)
ω5	3403 a (148)	290 $a_g(0)$	287 $a_1(17)$
ω6	3348 <i>a</i> (314)	112 $a_g(0)$	$112 a_1(0^*)$
ω ₇	1690 a (10)	3607 $a_u(0^*)$	$5 a_1 (0^*)$
ω8	1664 <i>a</i> (17)	1669 $a_u(2)$	$3607 a_2(0^*)$
ω	1645 a (14)	223 a_u (39)	1671 $a_2(0^*)$
ω ₁₀	1640 <i>a</i> (13)	15 a_u (77)	222 $a_2(0^*)$
ω ₁₁	1176 <i>a</i> (55)	$6 a_u(1)$	$17i a_2$
ω ₁₂	1164 <i>a</i> (111)	3606 $b_g(0)$	$3607 b_1(0^*)$
ω ₁₃	375 <i>a</i> (98)	1671 $b_g(0)$	1669 $b_1(2)$
ω ₁₄	301 <i>a</i> (7)	223 $b_g(0)$	223 b_1 (39)
ω ₁₅	261 <i>a</i> (25)	3539 b_u (141)	$10 \ b_{l} (38)$
ω ₁₆	236 a (29)	3376 b_u (561)	$3539 b_2(141)$
ω ₁₇	209 a (15)	1639 b_u (36)	3377 b_2 (523)
ω ₁₈	142 <i>a</i> (8)	1162 b_u (198)	1639 $b_2(19)$
ω ₁₉	126 a (17)	285 b_u (96)	1164 b_2 (142)
ω ₂₀	85 <i>a</i> (5)	133 b_u (16)	$132 b_2(16)$
ω ₂₁	23 a (43)	$3i b_u$	286 b_2 (79)

* These modes have intensities below 0.5 km/mol, but are IR active.

Supplementary Information

"Infrared spectra of mass-selected $Br^{-}(NH_3)_n$ and $I^{-}(NH_3)_n$ clusters" D.A. Wild, K. Kuwata, M. Okumura, E.J. Bieske

Table 4. MP2/aug-cc-pVDZ data for the Br⁻-(NH₃)₃ structures depicted in Figure 7 of the paper. Provided are internal coordinates (*r* in Å, θ in degrees), zero point energies (zpe in kcal/mol), energy differences ($\Delta E_{BSSE/Corr}$ in kcal/mol), and enthalpy change for the association reaction at 298K ($\Delta H_{2\rightarrow3}^{298}$ in kcal/mol). H_b refers to H-bonded hydrogen atoms, H_t to terminal hydrogen atoms, and H_{ba} to hydrogen atoms engaged in an ammonia-ammonia H-bond.

	C_3	C_{I}	C_s	C_{3h}
r(Br ⁻ -H _b)	2.639	2.498 A 2.736 D1 2.650 D2	2.517 <i>B</i> 4.500 <i>S</i> (H _{ba})	2.587
r(N-H _b)	1.030	1.033 A 1.028 D1 1.030 D2	1.032 <i>B</i>	1.031
r(N-H _{ba})	1.025	1.024 <i>D1</i> 1.024 <i>D2</i>	1.027 <i>S</i>	
$r(H_{ba} \cdots N)$	2.391	2.579 <i>D1</i> 2.588 <i>D</i> 2	2.297	
$r(N-H_t)$	1.021	1.022 A 1.023 D1 1.022 D2	1.021 <i>B</i> , <i>S</i>	1.022
θ (Br ⁻ -H _b -N)	159.5	179.6 A 153.7 D1 160.7 D2	175.038 B	167.9
θ (H _b -N-H _t)	105.6	104.8 <i>A</i> 103.4 <i>D1</i> 104.9 <i>D2</i>	104.8 <i>B</i> 105.3 <i>S</i>	104.2
θ (N-H _{ba} -N) ^c	137.1	139.5 <i>D1</i> 138.8 <i>D2</i>	167.5 <i>S</i>	
θ (H _t -N-H _t)		105.1 A	105.3	104.8
θ (H _b -Br ⁻ -H _b)	61.4	61.9 <i>A-D1</i> 62.8 <i>D1-D2</i> 62.3 <i>D2-A</i>	77.8	120.0
zpe	69.2	68.5	68.5	67.2
E _{MP2}	-2741.868327	-2741.859607	-2741.864096	-2741.861104
D_0	2144			
ΔE_{MP2}	0.0	5.47	2.65	4.53
$\Delta E_{BSSE/Corr}$	0.0	0.6	1.3	1.1
$\Delta H_{2 \rightarrow 3}^{298}$	-6.7	-5.6	-4.9	

<u>Supplementary Information</u> "Infrared spectra of mass-selected Br⁻- $(NH_3)_n$ and I⁻- $(NH_3)_n$ clusters" D.A. Wild, K. Kuwata, M. Okumura, E.J. Bieske

5

Table 5.	MP2/aug-cc	-pVDZ	harmonic	vibrational	frequencies	(in cm ⁻¹) for	structures	of Br-	$(\mathrm{NH}_3)_3$	depicted	in
Figure 7	of the paper.	Also lis	ted are mo	de symmetr	ries and inter	sities in	km/n	nol (in brac	kets).			

	<i>C</i> ₃	C_{I}	C_s	C_{3h}
ω1	3599 a (5)	3605 <i>a</i> (0 [*])	3612 <i>a</i> ' (1)	3545 a'
ω2	3522 a (176)	3598 a (8)	3591 a' (20)	3394 <i>a</i> '
ω3	3391 a (225)	3586 a (8)	3541 <i>a</i> ' (93)	1640 <i>a'</i>
ω4	1697 a (14)	3542 a (72)	3404 <i>a</i> ' (81)	1158 <i>a</i> '
ω ₅	1648 a (16)	3533 a (74)	3360 a' (328)	286 <i>a'</i>
ω ₆	1165 a (88)	3531 a (5)	1695 a' (11)	112 <i>a</i> '
ω7	449 a (78)	3423 <i>a</i> (63)	1671 <i>a</i> ' (1)	3608 <i>a</i> "
ω8	337 a (37)	3400 a (135)	1637 <i>a</i> ' (4)	1670 <i>a</i> "
ω	247 a (13)	3337 a (312)	1178 <i>a'</i> (36	219 <i>a</i> "
ω_{10}	159 <i>a</i> (0 [*])	1684 a (2)	1165 a' (212	31 <i>a</i> "
ω ₁₁	99 a (11)	1676 a (22)	365 a' (23)	4 <i>i a</i> "
ω ₁₂	3599 e (16)	1668 a (2)	301 <i>a</i> ' (91)	3543 e'
ω ₁₃	3518 e (12)	1659 a (5)	223 a' (16)	3388 e'
ω ₁₄	3388 e (111)	1645 a (5)	149 <i>a</i> '(3)	1640 <i>e'</i>
ω ₁₅	1675 e (39)	1638 a (29)	133 a' (10)	1161 <i>e'</i>
ω ₁₆	1640 e (1)	1201 a (104)	81 a' (29)	284 e'
ω ₁₇	1176 e (62)	1179 a (7)	36 <i>a</i> '(3)	128 e'
ω ₁₈	354 e (45)	1159 a (198)	21 <i>a</i> ' (9)	8 <i>i e'</i>
ω ₁₉	285 e (29)	393 a (125)	3612 <i>a</i> " (0 [*])	3608 e"
ω_{20}	199 e (59)	318 a (20)	3540 <i>a</i> " (52)	1671 <i>e</i> "
ω ₂₁	124 e (0 [*])	302 a (89)	3517 <i>a</i> " (132)	220 e"
ω ₂₂	92 e (4)	273 a (40)	3352 <i>a</i> " (330)	26 e"
ω ₂₃		247 a (8)	1669 <i>a</i> " (0 [*])	
ω_{24}		222 a (4)	1658 <i>a</i> " (6)	
ω ₂₅		204 a (23	1636 <i>a</i> " (25)	
ω ₂₆		186 a (16)	1162 <i>a</i> " (5)	
ω ₂₇		147 a (9)	472 <i>a</i> " (88)	
ω ₂₈		126 a (12)	319 <i>a</i> " (6)	
ω ₂₉		124 a (10)	287 a" (16)	
ω ₃₀		102 <i>a</i> (7)	220 a" (8)	
ω ₃₁		83 a (2)	138 <i>a</i> " (12	
ω ₃₂		62 <i>a</i> (0 [*])	119 <i>a</i> " (0 [*])	
ω ₃₃		54 <i>a</i> (5)	55 a" (13)	

 * These modes have intensities below 0.5 km/mol, but are IR active.