483 research outputs found
Essential residues for the enzyme activity of ATP-dependent MurE ligase from Mycobacterium tuberculosis
The emergence of total drug-resistant tuberculosis (TDRTB) has made the discovery of new therapies for tuberculosis urgent. The cytoplasmic enzymes of peptidoglycan biosynthesis have generated renewed interest as attractive targets for the development of new anti-mycobacterials. One of the cytoplasmic enzymes, uridine diphosphate (UDP)-MurNAc-tripeptide ligase (MurE), catalyses the addition of meso-diaminopimelic acid (m-DAP) into peptidoglycan in Mycobacterium tuberculosis coupled to the hydrolysis of ATP. Mutants of M. tuberculosis MurE were generated by replacing K157, E220, D392, R451 with alanine and N449 with aspartate, and truncating the first 24 amino acid residues at the N-terminus of the enzyme. Analysis of the specific activity of these proteins suggested that apart from the 24 Nterminal residues, the other mutated residues are essential for catalysis. Variations in K m values for one or more substrates were observed for all mutants, except the N-terminal truncation mutant, indicating that these residues are involved in binding substrates and form part of the active site structure. These mutant proteins were also tested for their specificity for a wide range of substrates. Interestingly, the mutations K157A, E220A and D392A showed hydrolysis of ATP uncoupled from catalysis. The ATP hydrolysis rate was enhanced by at least partial occupation of the uridine nucleotide dipeptide binding site. This study provides an insight into the residues essential for the catalytic activity and substrate binding of the ATP-dependent MurE ligase. Since ATP-dependent MurE ligase is a novel drug target, the understanding of its function may lead to development of novel inhibitors against resistant forms of M. tuberculosis
Utilization of Electrocardiographic P-wave Duration for AV Interval Optimization in Dual-Chamber Pacemakers
BACKGROUND: Empiric programming of the atrio-ventricular (AV) delay is commonly performed during pacemaker implantation. Transmitral flow assessment by Doppler echocardiography can be used to find the optimal AV delay by Ritter\u27s method, but this cannot easily be performed during pacemaker implantation. We sought to determine a non-invasive surrogate for this assessment. Since electrocardiographic P-wave duration estimates atrial activation time, we hypothesized this measurement may provide a more appropriate basis for programming AV intervals.
METHODS: A total of 19 patients were examined at the time of dual chamber pacemaker implantation, 13 (68%) being male with a mean age of 77. Each patient had the optimal AV interval determined by Ritter\u27s method. The P-wave duration was measured independently on electrocardiograms using MUSE® Cardiology Information System (version 7.1.1). The relationship between P-wave duration and the optimal AV interval was analyzed.
RESULTS: The P-wave duration and optimal AV delay were related by a correlation coefficient of 0.815 and a correction factor of 1.26. The mean BMI was 27. The presence of hypertension, atrial fibrillation, and valvular heart disease was 13 (68%), 3 (16%), and 2 (11%) respectively. Mean echocardiographic parameters included an ejection fraction of 58%, left atrial index of 32 ml/m(2), and diastolic dysfunction grade 1 (out of 4).
CONCLUSIONS: In patients with dual chamber pacemakers in AV sequentially paced mode and normal EF, electrocardiographic P-wave duration correlates to the optimal AV delay by Ritter\u27s method by a factor of 1.26
Characterisation of ATP-dependent Mur ligases involved in the biogenesis of cell wall peptidoglycan in Mycobacterium tuberculosis.
ATP-dependent Mur ligases (Mur synthetases) play essential roles in the biosynthesis of cell wall peptidoglycan (PG) as they catalyze the ligation of key amino acid residues to the stem peptide at the expense of ATP hydrolysis, thus representing potential targets for antibacterial drug discovery. In this study we characterized the division/cell wall (dcw) operon and identified a promoter driving the co-transcription of mur synthetases along with key cell division genes such as ftsQ and ftsW. Furthermore, we have extended our previous investigations of MurE to MurC, MurD and MurF synthetases from Mycobacterium tuberculosis. Functional analyses of the pure recombinant enzymes revealed that the presence of divalent cations is an absolute requirement for their activities. We also observed that higher concentrations of ATP and UDP-sugar substrates were inhibitory for the activities of all Mur synthetases suggesting stringent control of the cytoplasmic steps of the peptidoglycan biosynthetic pathway. In line with the previous findings on the regulation of mycobacterial MurD and corynebacterial MurC synthetases via phosphorylation, we found that all of the Mur synthetases interacted with the Ser/Thr protein kinases, PknA and PknB. In addition, we critically analyzed the interaction network of all of the Mur synthetases with proteins involved in cell division and cell wall PG biosynthesis to re-evaluate the importance of these key enzymes as novel therapeutic targets in anti-tubercular drug discovery
Recommended from our members
3-(5-Nitrofuran-2-yl)prop-2-en-1-one Derivatives, with Potent Antituberculosis Activity, Inhibit A Novel Therapeutic Target, Arylamine N-acetyltransferase, in Mycobacteria.
In this study, the inhibitory potential of 3-(5-nitrofuran-2-yl)prop-2-en-1-one derivatives was evaluated against a panel of bacteria, as well as mammalian cell lines to determine their therapeutic index. In addition, we investigated the mechanism of antibiotic action of the derivatives to identify their therapeutic target. We discovered compound 2 to be an extremely potent inhibitor of Mycobacterium tuberculosis H37Rv growth (MIC: 0.031 mg/L) in vitro, performing better than the currently used first-line antituberculosis drugs such as isoniazid, rifampicin, ethambutol, and pretomanid in vitro. Furthermore, compound 3 was equipotent to pretomanid against a multidrug-resistant M. tuberculosis clinical isolate. The derivatives were selective and bactericidal towards slow-growing mycobacteria. They showed low cytotoxicity towards murine RAW 264.7 and human THP-1 cell lines, with high selectivity indices. Compound 1 effectively eliminated the intracellular mycobacteria in a mycobacteria-infected macrophage model. The derivatives were assessed for their potential to inhibit mycobacterial arylamine N-acetyltransferase (NAT) and were identified as good inhibitors of recombinant mycobacterial NAT, a novel target essential for the intracellular survival of M. tuberculosis. This study provided hits for designing new potent and selective antituberculosis leads, having mycobacterial NAT inhibition as their possible endogenous mechanisms of action
DNA sequence-selective C8-linked pyrrolobenzodiazepine-heterocyclic polyamide conjugates show anti-tubercular-specific activities.
New chemotherapeutic agents with novel mechanisms of action are in urgent need to combat the tuberculosis pandemic. A library of 12 C8-linked pyrrolo[2,1-c][1,4]benzodiazepine (PBD)-heterocyclic polyamide conjugates (1-12) was evaluated for anti-tubercular activity and DNA sequence selectivity. The PBD conjugates were screened against slow-growing Mycobacterium bovis Bacillus Calmette-Guérin and M. tuberculosis H37Rv, and fast-growing Escherichia coli, Pseudomonas putida and Rhodococcus sp. RHA1 bacteria. DNase I footprinting and DNA thermal denaturation experiments were used to determine the molecules' DNA recognition properties. The PBD conjugates were highly selective for the mycobacterial strains and exhibited significant growth inhibitory activity against the pathogenic M. tuberculosis H37Rv, with compound 4 showing MIC values (MIC=0.08 mg l-1) similar to those of rifampin and isoniazid. DNase I footprinting results showed that the PBD conjugates with three heterocyclic moieties had enhanced sequence selectivity and produced larger footprints, with distinct cleavage patterns compared with the two-heterocyclic chain PBD conjugates. DNA melting experiments indicated a covalent binding of the PBD conjugates to two AT-rich DNA-duplexes containing either a central GGATCC or GTATAC sequence, and showed that the polyamide chains affect the interactions of the molecules with DNA. The PBD-C8 conjugates tested in this study have a remarkable anti-mycobacterial activity and can be further developed as DNA-targeted anti-tubercular drugs
New Spirometry Indices for Detecting Mild Airflow Obstruction.
The diagnosis of chronic obstructive pulmonary disease (COPD) relies on demonstration of airflow obstruction. Traditional spirometric indices miss a number of subjects with respiratory symptoms or structural lung disease on imaging. We hypothesized that utilizing all data points on the expiratory spirometry curves to assess their shape will improve detection of mild airflow obstruction and structural lung disease. We analyzed spirometry data of 8307 participants enrolled in the COPDGene study, and derived metrics of airflow obstruction based on the shape on the volume-time (Parameter D), and flow-volume curves (Transition Point and Transition Distance). We tested associations of these parameters with CT measures of lung disease, respiratory morbidity, and mortality using regression analyses. There were significant correlations between FEV1/FVC with Parameter D (r = -0.83; p < 0.001), Transition Point (r = 0.69; p < 0.001), and Transition Distance (r = 0.50; p < 0.001). All metrics had significant associations with emphysema, small airway disease, dyspnea, and respiratory-quality of life (p < 0.001). The highest quartile for Parameter D was independently associated with all-cause mortality (adjusted HR 3.22,95% CI 2.42-4.27; p < 0.001) but a substantial number of participants in the highest quartile were categorized as GOLD 0 and 1 by traditional criteria (1.8% and 33.7%). Parameter D identified an additional 9.5% of participants with mild or non-recognized disease as abnormal with greater burden of structural lung disease compared with controls. The data points on the flow-volume and volume-time curves can be used to derive indices of airflow obstruction that identify additional subjects with disease who are deemed to be normal by traditional criteria
Lesinurad in combination with allopurinol: a randomised, double-blind, placebo-controlled study in patients with gout with inadequate response to standard of care (the multinational CLEAR 2 study).
Determine the efficacy and safety of daily lesinurad (200 or 400 mg orally) added to allopurinol in patients with serum uric acid (sUA) above target in a 12-month, randomised, phase III trial.
Patients on allopurinol ≥300 mg (≥200 mg in moderate renal impairment) had sUA level of ≥6.5 mg/dL (≥387 µmol/L) at screening and two or more gout flares in the prior year. Primary end point was the proportion of patients achieving sUA level of <6.0 mg/dL (<357 µmol/L) (month 6). Key secondary end points were mean gout flare rate requiring treatment (months 7 through 12) and proportions of patients with complete resolution of one or more target tophi (month 12). Safety assessments included adverse events and laboratory data.
Patients (n=610) were predominantly male, with mean (±SD) age 51.2±10.90 years, gout duration 11.5±9.26 years and baseline sUA of 6.9±1.2 mg/dL (410±71 µmol/L). Lesinurad at 200 and 400 mg doses, added to allopurinol, significantly increased proportions of patients achieving sUA target versus allopurinol-alone therapy by month 6 (55.4%, 66.5% and 23.3%, respectively, p<0.0001 both lesinurad+allopurinol groups). In key secondary end points, there were no statistically significant treatment-group differences favouring lesinurad. Lesinurad was generally well tolerated; the 200 mg dose had a safety profile comparable with allopurinol-alone therapy. Renal-related adverse events occurred in 5.9% of lesinurad 200 mg+allopurinol, 15.0% of lesinurad 400 mg+allopurinol and 4.9% of allopurinol-alone groups, with serum creatinine elevation of ≥1.5× baseline in 5.9%, 15.0% and 3.4%, respectively. Serious treatment-emergent adverse events occurred in 4.4% of lesinurad 200 mg+allopurinol, in 9.5% of lesinurad 400 mg+allopurinol and in 3.9% of allopurinol-alone groups, respectively.
Lesinurad added to allopurinol demonstrated superior sUA lowering versus allopurinol-alone therapy and lesinurad 200 mg was generally well tolerated in patients with gout warranting additional therapy.
NCT01493531
C-1 Substituted isoquinolines potentiate the antimycobacterial activity of rifampicin and ethambutol
Introduction: The emergence of extensively drug-resistant strains of Mycobacterium tuberculosis threatens decades of progress in the treatment of a disease which remains one of the leading infectious causes of death worldwide. The development of novel antimycobacterial compounds is therefore essential to reinforce the existing antitubercular drug discovery pipeline. There is also interest in new compounds which can synergize with existing antitubercular drugs and can be deployed as part of a combination therapy. This strategy could serve to delay the emergence of resistance to first-line anti-tuberculosis drugs and increase their efficacy against resistant strains of tuberculosis. Previous research has established that several C-1 substituted tetrahydroisoquinolines have antimycobacterial activity. Here we sought to expand our understanding of their antimycobacterial structure activity relationships and their potential to act as adjunct therapies alongside existing antitubercular drugs./
Methods: Three chemical series were synthesised and assayed for their antimycobacterial potency, mammalian cell toxicity, inhibition of whole-cell efflux and synergism with isoniazid, rifampicin, and ethambutol.
Results: Several compounds were found to inhibit the growth of mycobacteria. Potent inhibitors of whole-cell efflux were also identified, as well as compounds which exhibited synergism with rifampicin and ethambutol./
Conclusions: Structure-activity relationships were identified for antimycobacterial potency, improved selectivity, whole cell efflux inhibition and synergism. Potent whole-cell efflux inhibitors and synergistic compounds were identified, suggesting potential development as adjuncts to existing anti-tuberculosis chemotherapy.
Probing the unusual anion mobility of LiBH_4 confined in highly ordered nanoporous carbon frameworks via solid state NMR and quasielastic neutron scattering
Particle size and particle–framework interactions have profound effects on the kinetics, reaction pathways, and even thermodynamics of complex hydrides incorporated in frameworks possessing nanoscale features. Tuning these properties may hold the key to the utilization of complex hydrides in practical applications for hydrogen storage. Using carefully synthesized, highly-ordered, nanoporous carbons (NPCs), we have previously shown quantitative differences in the kinetics and reaction pathways of LiBH_4 when incorporated into the frameworks. In this paper, we probe the anion mobility of LiBH_4 confined in NPC frameworks by a combination of solid state NMR and quasielastic neutron scattering (QENS) and present some new insights into the nanoconfinement effect. NMR and QENS spectra of LiBH_4 confined in a 4 nm pore NPC suggest that the BH_4− anions nearer the LiBH_4–carbon pore interface exhibit much more rapid translational and reorientational motions compared to those in the LiBH_4 interior. Moreover, an overly broadened BH_4− torsional vibration band reveals a disorder-induced array of BH_4− rotational potentials. XRD results are consistent with a lack of LiBH_4 long-range order in the pores. Consistent with differential scanning calorimetry measurements, neither NMR nor QENS detects a clear solid–solid phase transition as observed in the bulk, indicating that borohydride–framework interactions and/or nanosize effects have large roles in confined LiBH_4
Relationship between otolith morphometry and fish size of Otolithoides pama (Hamilton, 1822) from Hooghly-Matlah estuary, India
1636-1642The correlation between sagitta otolith morphometry (length, weight, and breadth) and weight of Otolithoides pama (Hamilton, 1822) occurring in the Hooghly-Matlah estuary of West Bengal was examined for one year (February 2017 to January 2018). The sagitta otoliths were extracted, cleaned, photographed, and measured. Otolith length, weight, and breadth were recorded for each pair of sagittae. The length and weight of the fish sample, as well as those of otoliths, ranged from 51 to 327 mm, 1.1 to 270 g, 2.0 to 13.9 mm, and 0.0085 to 0.756 g, respectively. A linear relationship existed between the length and weight of otolith with the length of fish. The relationship between total fish length (TL) and otolith length (OL) was recorded as TL = 0.038 (OL) + 0.123 (R2 = 0.799), that of total fish length (TL) and otolith weight (OW) being TL = 0.025 (OW) - 0.221 (R2 = 0.887), that of total fish length (TL) and otolith breadth being TL = 0.031 (OB) + 0.089 (R2 = 0.781). The morphometric relationships indicated that length, weight, and breadth of otolith exhibited a high correlation with the total length of fish
- …