22 research outputs found

    Shaping bacterial population behavior through computer-interfaced control of individual cells

    Get PDF
    This is the final version. Available from Springer Nature via the DOI in this record.Strains and data are available from the authors upon request. Custom scripts for the described setup are available as Supplementary Software.Bacteria in groups vary individually, and interact with other bacteria and the environment to produce population-level patterns of gene expression. Investigating such behavior in detail requires measuring and controlling populations at the single-cell level alongside precisely specified interactions and environmental characteristics. Here we present an automated, programmable platform that combines image-based gene expression and growth measurements with on-line optogenetic expression control for hundreds of individual Escherichia coli cells over days, in a dynamically adjustable environment. This integrated platform broadly enables experiments that bridge individual and population behaviors. We demonstrate: (i) population structuring by independent closed-loop control of gene expression in many individual cells, (ii) cell-cell variation control during antibiotic perturbation, (iii) hybrid bio-digital circuits in single cells, and freely specifiable digital communication between individual bacteria. These examples showcase the potential for real-time integration of theoretical models with measurement and control of many individual cells to investigate and engineer microbial population behavior.European Union's Seventh Frame ProgrammeAustrian Science FundAgence Nationale de la RechercheAgence Nationale de la RechercheAgence Nationale de la Recherch

    Exploring the utility of cross-laboratory RAD-sequencing datasets for phylogenetic analysis

    Get PDF
    BACKGROUND: Restriction site-Associated DNA sequencing (RAD-Seq) is widely applied to generate genome-wide sequence and genetic marker datasets. RAD-Seq has been extensively utilised, both at the population level and across species, for example in the construction of phylogenetic trees. However, the consistency of RAD-Seq data generated in different laboratories, and the potential use of cross-species orthologous RAD loci in the estimation of genetic relationships, have not been widely investigated. This study describes the use of SbfI RAD-Seq data for the estimation of evolutionary relationships amongst ten teleost fish species, using previously established phylogeny as a benchmark. RESULTS: The number of orthologous SbfI RAD loci identified decreased with increasing evolutionary distance between the species, with several thousand loci conserved across five salmonid species (divergence ~50 MY), and several hundred conserved across the more distantly related teleost species (divergence ~100–360 MY). The majority (>70%) of loci identified between the more distantly related species were genic in origin, suggesting that the bias of SbfI towards genic regions is useful for identifying distant orthologs. Interspecific single nucleotide variants at each orthologous RAD locus were identified. Evolutionary relationships estimated using concatenated sequences of interspecific variants were congruent with previously published phylogenies, even for distantly (divergence up to ~360 MY) related species. CONCLUSION: Overall, this study has demonstrated that orthologous SbfI RAD loci can be identified across closely and distantly related species. This has positive implications for the repeatability of SbfI RAD-Seq and its potential to address research questions beyond the scope of the original studies. Furthermore, the concordance in tree topologies and relationships estimated in this study with published teleost phylogenies suggests that similar meta-datasets could be utilised in the prediction of evolutionary relationships across populations and species with readily available RAD-Seq datasets, but for which relationships remain uncharacterised. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13104-015-1261-2) contains supplementary material, which is available to authorized users

    Multidrug efflux pumps:structure, function and regulation

    Get PDF
    Infections arising from multidrug-resistant pathogenic bacteria are spreading rapidly throughout the world and threaten to become untreatable. The origins of resistance are numerous and complex, but one underlying factor is the capacity of bacteria to rapidly export drugs through the intrinsic activity of efflux pumps. In this Review, we describe recent advances that have increased our understanding of the structures and molecular mechanisms of multidrug efflux pumps in bacteria. Clinical and laboratory data indicate that efflux pumps function not only in the drug extrusion process but also in virulence and the adaptive responses that contribute to antimicrobial resistance during infection. The emerging picture of the structure, function and regulation of efflux pumps suggests opportunities for countering their activities

    Pole Age Affects Cell Size and the Timing of Cell Division in Methylobacterium extorquens AM1▿†

    No full text
    A number of recent experiments at the single-cell level have shown that genetically identical bacteria that live in homogeneous environments often show a substantial degree of phenotypic variation between cells. Often, this variation is attributed to stochastic aspects of biology—the fact that many biological processes involve small numbers of molecules and are thus inherently variable. However, not all variation between cells needs to be stochastic in nature; one deterministic process that could be important for cell variability in some bacterial species is the age of the cell poles. Working with the alphaproteobacterium Methylobacterium extorquens, we monitored individuals in clonally growing populations over several divisions and determined the pole age, cell size, and interdivision intervals of individual cells. We observed the high levels of variation in cell size and the timing of cell division that have been reported before. A substantial fraction of this variation could be explained by each cell's pole age and the pole age of its mother: cell size increased with increasing pole age, and the interval between cell divisions decreased. A theoretical model predicted that populations governed by such processes will quickly reach a stable distribution of different age and size classes. These results show that the pole age distribution in bacterial populations can contribute substantially to cellular individuality. In addition, they raise questions about functional differences between cells of different ages and the coupling of cell division to cell size
    corecore