1,443 research outputs found
Towards an analysis of shear suspension flows using radial basis functions
In this paper, radial basis functions are utilised for numerical prediction of the bulk properties of
particulate suspensions under simple shear conditions. The
suspending fluid is Newtonian and the suspended particles are rigid. Results obtained are compared well with those based on finite elements in the literature
Characterization of the yeast flora on the surface of grape berries in Israel
Yeast populations were collected from the surface of berries of three grape cultivars during three seasons, from fruit set to maturity. They were studied by RAPD and ap-PCR, each with two primer pairs. In the population, identical isolates were found only rarely on 13 % of the bunches in 1997 and on 58 % of the berries in 1999. From RAPD and ap-PCR, a dendrogram with clusters of similarity was established. Eleven representatives from clusters of the white yeast dendrogram were identified by traditional methods as 10 different yeast species, one of which has not been isolated from grape berry surfaces before. The population size was smaller for Colombard than for Cabernet Sauvignon and Muscat of Alexandria berries.
Improving BDD Based Symbolic Model Checking with Isomorphism Exploiting Transition Relations
Symbolic model checking by using BDDs has greatly improved the applicability
of model checking. Nevertheless, BDD based symbolic model checking can still be
very memory and time consuming. One main reason is the complex transition
relation of systems. Sometimes, it is even not possible to generate the
transition relation, due to its exhaustive memory requirements. To diminish
this problem, the use of partitioned transition relations has been proposed.
However, there are still systems which can not be verified at all. Furthermore,
if the granularity of the partitions is too fine, the time required for
verification may increase. In this paper we target the symbolic verification of
asynchronous concurrent systems. For such systems we present an approach which
uses similarities in the transition relation to get further memory reductions
and runtime improvements. By applying our approach, even the verification of
systems with an previously intractable transition relation becomes feasible.Comment: In Proceedings GandALF 2011, arXiv:1106.081
Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking
One technique to reduce the state-space explosion problem in temporal logic
model checking is symmetry reduction. The combination of symmetry reduction and
symbolic model checking by using BDDs suffered a long time from the
prohibitively large BDD for the orbit relation. Dynamic symmetry reduction
calculates representatives of equivalence classes of states dynamically and
thus avoids the construction of the orbit relation. In this paper, we present a
new efficient model checking algorithm based on dynamic symmetry reduction. Our
experiments show that the algorithm is very fast and allows the verification of
larger systems. We additionally implemented the use of state symmetries for
symbolic symmetry reduction. To our knowledge we are the first who investigated
state symmetries in combination with BDD based symbolic model checking
Galanin Receptor 1 Deletion Exacerbates Hippocampal Neuronal Loss after Systemic Kainate Administration in Mice
Galanin is a neuropeptide with a wide distribution in the central and peripheral nervous systems and whose physiological effects are mediated through three G protein-coupled receptor subtypes, GalR1, GalR2, and GalR3. Several lines of evidence indicate that galanin, as well as activation of the GalR1 receptor, is a potent and effective modulator of neuronal excitability in the hippocampus.In order to test more formally the potential influence of GalR1 on seizure-induced excitotoxic cell death, we conducted functional complementation tests in which transgenic mice that exhibit decreased expression of the GalR1 candidate mRNA underwent kainate-induced status epilepticus to determine if the quantitative trait of susceptibility to seizure-induced cell death is determined by the activity of GalR1. In the present study, we report that reduction of GalR1 mRNA via null mutation or injection of the GalR1 antagonist, galantide, prior to kainate-induced status epilepticus induces hippocampal damage in a mouse strain known to be highly resistant to kainate-induced neuronal injury. Wild-type and GalR1 knockout mice were subjected to systemic kainate administration. Seven days later, Nissl and NeuN immune- staining demonstrated that hippocampal cell death was significantly increased in GalR1 knockout strains and in animals injected with the GalR1 antagonist. Compared to GalR1-expressing mice, GalR1-deficient mice had significantly larger hippocampal lesions after status epilepticus.Our results suggest that a reduction of GalR1 expression in the C57BL/6J mouse strain renders them susceptible to excitotoxic injury following systemic kainate administration. From these results, GalR1 protein emerges as a new molecular target that may have a potential therapeutic value in modulating seizure-induced cell death
Intracellular chloride concentration influences the GABAA receptor subunit composition
GABAA receptors (GABAARs) exist as different subtype variants showing unique functional properties and defined spatio-temporal expression pattern. The molecular mechanisms underlying the developmental expression of different GABAAR are largely unknown. The intracellular concentration of chloride ([Cl−]i), the main ion permeating through GABAARs, also undergoes considerable changes during maturation, being higher at early neuronal stages with respect to adult neurons. Here we investigate the possibility that [Cl−]i could modulate the sequential expression of specific GABAARs subtypes in primary cerebellar neurons. We show that [Cl−]i regulates the expression of α3-1 and δ-containing GABAA receptors, responsible for phasic and tonic inhibition, respectively. Our findings highlight the role of [Cl−]i in tuning the strength of GABAergic responses by acting as an intracellular messenger
Assessing architectural evolution: A case study
This is the post-print version of the Article. The official published can be accessed from the link below - Copyright @ 2011 SpringerThis paper proposes to use a historical perspective on generic laws, principles,
and guidelines, like Lehman’s software evolution laws and Martin’s design principles, in order to achieve a multi-faceted process and structural assessment of a system’s architectural evolution. We present a simple structural model with associated historical metrics and
visualizations that could form part of an architect’s dashboard. We perform such an assessment for the Eclipse SDK, as a case study of a large, complex, and long-lived system for which sustained effective architectural evolution is paramount. The twofold aim of checking generic principles on a well-know system is, on the one hand,
to see whether there are certain lessons that could be learned for best practice of architectural evolution, and on the other hand to get more insights about the applicability of such principles. We find that while the Eclipse SDK does follow several of the laws and principles, there are some deviations, and we discuss areas of architectural improvement and limitations of the assessment approach
The Depolarizing Action of GABA in Cultured Hippocampal Neurons Is Not Due to the Absence of Ketone Bodies
Two recent reports propose that the depolarizing action of GABA in the immature brain is an artifact of in vitro preparations in which glucose is the only energy source. The authors argue that this does not mimic the physiological environment because the suckling rats use ketone bodies and pyruvate as major sources of metabolic energy. Here, we show that availability of physiologically relevant levels of ketone bodies has no impact on the excitatory action of GABA in immature cultured hippocampal neurons. Addition of β-hydroxybutyrate (BHB), the primary ketone body in the neonate rat, affected neither intracellular calcium elevation nor membrane depolarizations induced by the GABA-A receptor agonist muscimol, when assessed with calcium imaging or perforated patch-clamp recording, respectively. These results confirm that the addition of ketone bodies to the extracellular environment to mimic conditions in the neonatal brain does not reverse the chloride gradient and therefore render GABA hyperpolarizing. Our data are consistent with the existence of a genuine “developmental switch” mechanism in which GABA goes from having a predominantly excitatory role in immature cells to a predominantly inhibitory one in adults
- …