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Abstract:  In this paper, radial basis functions are utilised for nuo@mprediction of the bulk
properties of particulate suspensions under simple slealittons. The suspending fluid is New-
tonian and the suspended particles are rigid. Resultsmauataire compared well with those based
on finite elements in the literature.
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1 Introduction

Particulate suspensions, which involve transport of rgadticles suspended in a fluid medium,
occur in many industrial processes such as slurries, dslldiuidised beds, etc. Due to their great
structural and physical variety, the use of experimentseterthine the macroscopic rheological
properties of these multiphase materials was seen to baatigal [Phan-Thien and Kim (1994)].
However, it may be possible to employ numerical simulationsredict the bulk properties of mul-
tiphase materials. Various numerical models have beeropeap Among them, direct numerical
simulations (DNSs), which consist in solving the fundamaéetjuations for particles (Newton-
Euler equation) and a fluid (Navier-Stokes equation) in aadiand fully-coupled manner, have
received a great deal of attention. Two main advantages ddate that (i) they can handle
particles of different shapes and sizes as well as any typkiidfand (ii) hydrodynamic forces
and moments can be calculated directly from the fluid flow/fi@ifties faced by DNSs include
(i) a very large number of particles is typically required oproper simulation and (ii) the fluid
domain is of very complex shape due to the presence of patinid the change of their positions
with time. Based on the fluid-phase solver employed, DNSdeariassified into two categories.
In the first category, a mesh follows the movement of the gasj i.e. a moving mesh is used.
Methods based on the arbitrary Lagrangian-Eulerian (ALBYinmg mesh approach proposed by
Hu, Joseph, and Crochet (1992) are widely used, e.g. [HWb[1%uang, Feng, Hu, and Joseph
(1997); Huang, Hu, and Joseph (1998)]. In the second categonesh covers the whole domain
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and is independent of the position of particles, i.e. a fixesgimis used. Methods based on the
fictitious domain approach proposed by Glowinski, Pan, agribBx (1998) are widely employed,
e.g. [Hwang, Hulsen, and Meijer (2004); Patankar, Singbeph, Glowinski, and Pan (2000);
Singh, Joseph, Hesla, Glowinski, and Pan (2000)]. Hwandseth and Meijer (2004) incorpo-
rated sliding bi-periodic frames, introduced by Lees andi&rds (1972) for molecular dynamics,
into the simulation of particulate flows. This concept akotve modelling of suspension systems
with infinite numbers of particles to be conducted througmalsnumber of particles in a repre-
sentative reference sliding frame. The computational fiidchain is thus small with bi-periodic
conditions on the frame and no-slip conditions on the sedaif the particles.

Over the last two decades, radial basis functions (RBFsyeapr to be universal approximators,
have been developed and applied to solve different type#fefehtial problems encountered in
applied mathematics, science and engineering, e.g. [&assl{2007); Kansa (1990); Le-Cao,
Mai-Duy, and Tran-Cong (2009); Sarler (2005)] and the mfees therein. RBF-based meth-
ods are extremely easy to implement and capable of achievimgh level of accuracy using a
relatively-small number of nodes. One can construct RBsetaapproximations through differ-
entiation or integration. Since integration is a smoothopgrator, the latter has higher approx-
imation power than the former especially in the represemtatf derivative functions, e.g. [Le-
Cao, Mai-Duy, and Tran-Cong (2009); Mai-Duy and Tran-Co2@0({l); Mai-Duy and Tran-Cong
(2003)].

In this paper, integrated RBFs (IRBFs) and point collocatioe utilised in the context of bound-
ary fitted Cartesian grids and sliding bi-periodic frames tfte direct simulation of flows of
Newtonian-based particulate systems. The remainder g@fatper is organised as follows. Section
2 gives a brief review of the governing equations and the ephof sliding frames. In Section
3, the proposed numerical procedure is described. Nunheesalts are presented in Section 4.
Section 5 concludes the paper.

2 Governing equations and sliding frames concept
2.1 Governing equations

Let N be the entire computational domain, including the interggions occupied by the par-
ticles. LetR(t) anddR(t) be the region and its boundary of tite particle of timet, where
i=(1,2,---,N) andN is the number of particles (Figure 1).

Fluid motion: The laws of mass and momentum conservation for an incompledkiid lead to

Ou = 0 (1)
Du

whereu is the velocity vectorps the density of the fluidg the total stress tensor; aiy.] /Dt the



material derivative defined as

D[] _ 9[]
o =g+ D). ®)

For a Newtonian fluid, the total stress tensor is given by
0 = —pl +21D, (4)

where p is the hydrodynamic pressuré;the unit tensor; the viscosity; and the strain rate
tensor defined as

D= %[Du +(Ou)T]. (5)

In the case of 2D problems, the stream function - vorticityrfolation has been widely employed
because of its simplicity. The governing equations (1) af®) (4) can be rewritten as follows.
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wherey is the stream functionp the vorticity; Re the Reynolds number; andandv the compo-
nents ofu, which are defined in terms of the stream function as
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The given velocity boundary conditionsandyv, can be transformed into two boundary conditions
on the stream function and its normal derivative

oy _

on =&

Y=y,

wheren is the direction normal to the boundary, andndé& prescribed functions.

Particle motion: Consider arith particle. The motion of the particle can be described lgy th
Newton-Euler equations

dU; e
MIW_FH (8)
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whereM;, |, Ui andQ; are the mass, inertia tensor, translational velocity vaaftthe mass centre
and angular velocity vector of thi¢gh particle, respectively; anB; and T; the force and torque
vectors acting on thih particle.

The force and torque vectors can be computed from the fluiddkw

Fi :% o.nds, (10)
IR (1)

T :j{ rx(o.n)ds, (11)
dR(t)

wherer is the position vectorn the outward unit vector normal to the bounda¥y, andds the

length of an infinitesimal part afPR.
Non-slip boundary conditions on the interface between thid ind theth particle are given by

u=Ui+Qxr, 12)
where
dxX;
UI - Ev
do;
QI - Ta

in which X; is the position vector of the mass center &dhe orientation of théth particle. In
terms of the stream function, (12) becomes

W _ o

dy =U;j — Qjy (13)
w_ ., .

ax - _\/I QIX) (14)

whereU; andV; are the two components of andQ; the magnitude o€);.

2.2 Sliding bi-periodic frames concept

Consider a particulate flow of very large domain under sinspkear conditions in thedirection.
One possible way to make such a large problem tractable isnaliy it using the concept of
sliding bi-periodic frames. The problem domain can be dididnto a set of identical sliding
frames of widthL and heightH (Figure 2). Each frame translates along the shear direetion
its own average velocity. Rows of frames slide relativelpi® another by an amouat= yHt,
wherey is the given shear ratel height of the frame antdlshear time [Hwang, Hulsen, and Meijer
(2004)].



Because frames have similar solutions, we consider onlyframee. If particles in a frame are
ignored, it can be seen that the velocity profile is linear

U=uo+ Yy, (15)
v=0, (16)

where the origin of th&—y coordinate system is located at the centre of the fragéhe trans-
lation velocity of the frame andH /2 <y < H/2. With the presence of particles, one has

U+ uo+ vy, (17)
: (18)

)

u=
V=

<

wherel andv are the perturbations from the linear profile.

Since the solution is continuous across sliding framesfdal@ving bi-periodic boundary condi-
tions for the velocityu and the tractiorr can be applied to each frame

u(—L/2,y,t):u(L/2,y,t), —H/ZSVSH/Z (19)
T(—L/Z,y,t) :T(L/Zvyvt)v —H/ZSVSH/Z (20)

for the two vertical faces, and

u(x,—H/2,t) = u(x+yHt,H/2,t) + (yH,0)7, —L/2<x<L/2, (21)
T(x,—H/2,t) = T(x+ yHt,H/2,1), —L/2<x<L/2, (22)

for the two horizontal faces.

3 Proposed technique

In this study, we propose a numerical procedure based ondRBE sliding frames for the sim-
ulation of particulate suspensions under simple shearitonsl The fluid domain in a refer-
ence frame is simply discretised using a Cartesian gyig ny. Let1,I>,I'3 andl'4 be the
sides of the reference frame (Figure 3). IRBFs are employedagh grid line to represent the
field variablesy and w (one-dimensional IRBFs). Sliding bi-periodic boundanndibions are
presently implemented by means of point collocation rathen the Lagrange multipliers used
in [Hwang, Hulsen, and Meijer (2004)]. The proposed proceditombines strengths of three
approaches, namely IRBFs (high-order accuracy), Carnteagias (easy preprocessing) and the
sliding bi-periodic frames concept (infinite number of paes). To our best knowledge, this is
a first attempt to use RBFs for the analysis of shear partedlaws. In the following, details
are presented for the three constituent components of dpmped procedure. 1D-IRBFs are first
described. Sliding bi-periodic boundary conditions amntexpressed in terms of the stream func-
tion and implemented with IRBFs and point collocation. Hinauitable formulas and their IRBF
implementation are presented for computing the bounddnesan the particles.



3.1 1D-IRBFs

Consider a grid line that can be bounded by two faces of tmedrahe boundaries of two particles,
or the boundary of the particle and the frame. Assume a gralih thex direction and letf be
the field variable. We use IRBFs to approximdteThe construction procedure is as follows.

Second-order derivative dfalong a grid line can be decomposed into RBFs
9%f(x n

dx2 le, gi(x iiwi Ii(z) (X), (23)

m
wherem is the number of RBFs{gi(x)}"; = { 2)(x)}, the set of RBFs;{w;}{"; the set
i1

of weights to be found and representay and w. Approximate expressions for the first-order
derivative and the field variable are then obtained throutgmgration

df(x) . m W (1)
% _Zl wili ™ (X) + €1, (24)
ZW, + C1X+ Co, (25)

Wherel (x) = [, 2) (x)dx andli(o)(x) = fli<1)(x)dx. In this study, IRBFs are implemented with
the multhuadrlc (MQ) function and one thus has

1200 = /(- G)2 +2 (20

EI I £ (27)
_a2 —c)2 2(X—C

Ii(O)(X) — <%+%)A+ MB’ (28)

wherec; anda; are the centre and the width of tith MQ, respectivelyA = /(x—¢)2+a?; and
=In ((x— C)+4/(X—0ci)? +ai2>. We choose the grid sizeas the RBF widthg;. The set of

collocation points{x; }i; is taken to be the same as the set of cenfogg” ;.

As shown in Figure 4, a grid line contains two sets of nodahtsoi The first set consists of
interior points that are also the grid nodes (regular nodd@$)e function values at the interior
points ({X; }?:1) are unknown. The second set consists of the two negieand x,, which are
generated by the intersection of the grid line and the bauesla

Collocating (25) at the nodal points yields

f W
(f%ﬂ>ﬂm(Q), (29)
f (X02) C
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Solving (29) for the coefficient vector, including the twadgration constants, results in

~

W A f
( i ) = (/) ( f () ) , (30)
C2 f (Xp2)

N1
where (,ﬂ (O)) is the generalised inverse.

Making use of (30), the values of the first and second devieatof f at the interior points are
computed in terms of nodal variable values

af(x1)
IX ~
af(Xz) 1 f
d'x — j\(l) <j\(0)> f(Xbl) : 31)
9t (xq) f (Xp2)
X
and
92f (x)
2 —~
(92‘?‘)?X2) 1 f
0?(2 - ,ﬂ/\(Z) (j\(O)) f(Xbl) ’ (32)
2 f (Xp2)
97t (xq)
0x2
where
1) 157 0q) W) 1 0
AW _ 117 00) 157 00) W) 1 0



and
O1(X1) G2(X1) -+ gm(x) O O
70 _ 01(X2) Go(X2) -+ Om(x2) O O

Gi(Xq) Q%) -+ Om(xq) O O
It can be seen from (31) and (32) that Dirichlet conditiong,atandxy, are incorporated into the
IRBFN approximations. Depending on how a grid line is bouhdle boundary points,; and
Xp2 have particular locations. For example, one hgs€ N> andxy, € IM4) if a grid line is bounded

by the two vertical faces of the frame, andi(€ N> andxy, € dR) if the boundary surfaces are
the left face and théh particle boundary.

In the same manner, one can obtain the IRBFN expressions fogiad line.
3.2 Sliding bi-periodic boundary conditions

The continuity of the stream function and the vorticity a&séwo adjacent sliding frames leads to
the following periodic boundary conditions [Anderson, K&ea, and Hulsen (2006)]

W2y =20 1/2y0, —Ha<y<H/2 (34)
99 _Ljayt) =22 /2yt), —H/2<y<H/2 (36)
ox $H = ox $ == ’

for the two vertical faces and

WX, —H/2,t) = @(x+ yHt, H/2,t), —L/2<x<L/2, (37)
%—‘)’/’(x,—H/z,t) = i—‘f/’(w VHEH /2t +VH, —L/2<x<L/2, (38)
w(x,—H/2,t) = w(x+ yHt,H/2,1), —L/2<x<L/2, (39)
Jw Jw .

a—y(x,—H/Z,t) = d_y(x+ JHEH/2,t), —L/2<x<L/2, (40)

for the two horizontal faces.

Consider the stream functiofr. The values ofyy are unknown not only at the interior points
(Xi,yj) with 2 <i <ny—1and 2< j <ny—1 but also at the boundary points of the reference
frame(—L/2,y;j), (L/2)yj), (xi,—H/2) and(x,H/2) with 1 < j <ny and 2<i <ny—1. There
are Ay + 2(ny — 2) unknowns for the latter, leading tg, + 2ny + 2(n, — 2) unknowns in total,
wherenip is the number of interior points. Apart from collocating theverning equation for
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 at the interior points, one also needs to generajet2(ny — 2) extra equations which can be
achieved by using the bi-periodic boundary conditions ,(83%4), (37) and (38). Details are as
follows.

W-L/2y) - w(L/2y) =0, 1<j<n, (41)
d 0 .

Pv2yn-Ejzy) =0 1<j<n, (@2
WX, —H/2) = @(x + yHt,H/2) =0, 2<i<n—1, (43)
oy, oy, . . .
d—y(x,,—H/Z)—d—y(x,+yHt,H/2)—yH_0, 2<i<n—1, (44)

where the time variableis left out for the sake of simplicity.

In (41)-(44), one needs to expredg(L/2,y;)/dx, dW(—L/2,y;)/dx, dW(x,—H /2)/dy, (% +
yHt,H/2) anddy(x + yHt,H/2)/dy in terms of nodal values ap.

For dy(£L/2,y;)/0x, the following IRBF expressions are obtained by collogat{#4) atx =
+L /2 and then making use of (30)

] 7
L2y =122, 181/2),10/(70) ( W61y, ) (45)
w(L/2.y))
. 7
W L2y =112, 12,10 (50) ( w(-L/2,y)) ) . (46)
W (Xo2,Yj)
Similarly, one can obtain
oy (1) (1) ~0)\ "t ¢
3y 06 R/ =1 (/2 0 (H/2),1.01(F0) T ek -H/2) ). (47)
WX, Yp2)

For @(x + yHt,H /2), collocating (25) ak + yHt and then making use of (30) lead to

_ _ oL ¢
WEH/2) =160, 18 (%),%.1] (F9) ( W(-L/2,H/2) ) , (48)
W(L/2,H/2)
wherex; = x; + yHt. The process of deriving the IRBF expression dap(x; + yHt,H /2) /dy is
similar to that fory(x; + yHt,H/2).
Sliding bi-periodic boundary conditions for the vorticilye also obtained in a similar fashion.
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3.3 Boundary conditions on the particles’ boundaries
3.3.1 Boundary conditions for the stream function

The values of the stream functiap on the boundary of each particd are constant because of
u(x).n = 0 wherex € dR, andn is the outward unit vector normal @R. Particles have their
own boundary values aff which are unknown. To find these unknowns, Lewis (1979) ssigge
using the condition that the pressure is a single-valuedtimm on the boundary of a particle. This
condition can be mathematically described as

]‘g 9P s — jfmp ds=0, (49)

p 0S

wherep is the pressure argtthe arc length. In the Cartesian coordinate system, (49rbes

fgpdxjtf 9Py —o. (50)

The pressure gradientp can be obtained from the momentum equations in the primiwizble
form. By replacingu = dy/dy andv= —dy/dx, one can express the component§lgfin terms
of the stream function and its derivatives.

3.3.2 Boundary conditions for the vorticity

The values of the vorticity odR can be computed via

0%y oy

0X2 + = ayz, XEdP,. (51)

The handling of (51) thus involves the evaluation of secoraer derivatives of the stream function
in both x andy directions. Unfortunately, the boundary points @8 do not generally coincide
with the grid nodes and hence they lie on eitlkeor y grid lines. In [Le-Cao, Mai-Duy, and
Tran-Cong (2009)], we proposed the following formulae

I 2] 52 2 2
t\2| 020 t 2w 1%y
= (14 (=X -z = P 2
@ * (ty> e 2 dxds+ty dyos’ X € oR, (52)

for thex grid lines, and

4\’ %y 1, 0%y  10%
=11 y _ = P
© " <tx> dy?  tZ dyods + t, OX0S’ xR, (53)

for they grid lines. In (52) and (53) andty are thex andy components of the unit tangential
vector and)(.)/dsrepresents the derivative @ ondR which is known (Figure 5). The boundary
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conditions for the vorticity are thus written in terms of thecond derivative oy with respect to
xoryonly.

In the case that thih particle is of circular shape of radil% and rotates about the centre of
the reference frame at the angular velocity Expressions for computing, ty, 0?1/ dxds and
0?1/ dyds become

b= ¢%_y2 (54)
ty = \/%yz (55)
% = %Qiy’ (56)
%;ﬂs = —éQix. (57)
Substitution of (54)-(57) into (52) and (53) yields

w= [1+(3—(’)2}‘;2—X‘£+[<¥)2—1] Q. xcdm, (58)

w= 1| Qi, xeoJR. (59)

x\ 2| o2y x\ 2
o <y> ] oy " [<y>
The IRBF implementation of (50) is straightforward, whifgesial treatments are required in han-
dling (52)-(53) and (58)-(59). For the latter, normal dative boundary conditions for the stream
function, i.e. d@/dn, need be incorporated into expressions (52), (53), (58)(&88y Sincey
anddy/on are known from the previous iteration, one can easily obtanvalues ofd s/ dx
anddy/dy on dR. The proposed procedure impossg/on, i.e. dY/dx anddy/dy, using the
constants of integration. On argrid line, one needs to incorporafey /dx into 9%y /dx?, while
on any grid line, dy/dy is incorporated int@?y/dy*. Because these two processes are similar,
details are given here for argrid line only, e.g. the one witk,; € ', andxy, € dR. The system
for the conversion of the RBF space into the physical spa@er@w takes the form

A~

w(fm so (W
W (%2) :( 2 ) e ) (60)
Y (Xp2) 2

where the conversion matrix is of dimensigms+ 1) x (m+ 2) and

2= 1 062, 18" (02), -+ 1 062),1,0)
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Using (60), one obtains the following from (23) (in whi¢h= ¢ andx = x»)

A~

v
) ~ -1
aa—xlf(xbz) = [gl(XbZ)’QZ(XbZ)’ o agm(XbZ)aO’ O] ( j%O) > igibl;;g (61)
IV (xp2)

Since the conversion matrix in (60) is not over-determirtiee JRBFN approximation fod? (X, ) /0%
satisfiesd //dx atx = xpp identically. This imposition shows a clear advantage of lRBver the
usual differentiated approximations. Substituting (69 i(52), one is able to obtain the boundary
conditions ordR for the vorticity equation. It is noted that givehy/dx anddy/dy on dR, the
termsd?y/dxds andd?y/dydsin (52) and (53) are known.

4 Numerical examples

In this section, the proposed procedure is validated thrdbhgee examples. The first example
examines the performance of the present technigue in thkeingmtation of sliding bi-periodic
boundary conditions of the frame. The second example iigpadss the accuracy of the present
technique in the handling of boundary conditions that arélar to those on the particles’ bound-
aries. In the third example, the proposed method is apmisihulate a shear flow of a Newtonian-
based particulate system, which is modelled by one parsiggpended in a sliding rectangular
frame. For all numerical examples, the problem domain isrdttssed using a uniform Cartesian
grid. The interior points that fall very close to the curveegular boundary (within a distance of
h/8, h - the grid size) are removed from the set of nodal points.

4.1 Example 1: Sliding bi-periodic boundary conditions

In this example, the 1D-IRBF implementation of shear biigm#ic boundary conditions is vali-
dated. The test problem is governed by

0’y %Y

W + 0—)/2 - b(X, y) (62)
The domain of interest is the region lying between a circleadfus 7/4 and a square of dimensions
1 x 1 which are both centered at the origin. The exact solution is

W(xy) = sin(m(x— yyt)) sin(my), (63)

from which the driving functiorb(x,y) in (62) and the Dirichlet boundary conditions on the hole
can be easily derived. The value yofs set to 1. This problem is taken from [Anderson, Keestra,
and Hulsen (2006)].
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The accuracy of an approximation scheme is measured by nog#ms discrete relative, error
defined as

/<M e_ 111)2
Ne ZIzl(LM wl) (64)

R M (We)? ’

whereM is the number of unknown nodal valuesyafandy® andy are the exact and approximate
solutions, respectively. Another important measure iscthravergence rate of the solution with
respect to the grid refinement

Ne(h)

%

yh = O(h"), (65)

in which a andy are exponential model's parameters. Given a set of obsengathese parame-
ters can be found by the general linear least squares teshniq

A number of grids, namely12 x 12,22 x 22, --- ,62 x 62), are employed for the convergence
study. Results concerning the condition number of the systetrix, denoted by condj, and
the errorNe att = 0 are listed in Table 1. It can be seen that the present systatmixrnhas
relatively-low condition numbers and the solution coneardast at the rate of 2.94.

Contour plots fory at different values of the shear tirhenamely(0,0.5,0.75,1), using a grid of
42 x 42 are shown in Figure 6. Exact solutions are also includdw tivo solutions are indistin-
guishable.

4.2 Example 2: A rotating circular cylinder

In this test problem, the 1D-IRBF implementation of boundawnditions of particles is validated
through the simulation of the flow of a Newtonian fluid showrFigure 7. The inner cylinder
rotates at a unit angular velocity while the outer cylindestationary. The value @ on the outer
wall is simply set to zero, while the value ¢f on the inner wall is considered as an unknown,
denoted byai . The flow is governed by (6) and (7) and subject to the boundangitions

_ oY _9y _
w_ﬁ_ay_ )

on the outer cylinder and

_ oy _ oy _
l'nu_anWa“) E_ X, ay_ ya
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on the inner cylinder. Using (58) and (59) with= 1, the vorticity boundary values on the rotating
cylinder can be computed by

o= [ G 5+ (G
e (3)] 5+ () -1

The value ofyyg is found using the single-valued pressure condition asidssax earlier.

The flow is simulated witlR = 0.25 andL = 1.0 using a uniform grid of 3& 36. Different values
of the Reynolds number, namely (1, 100, 500, 700, 1000), ansidered. Results concerning
Uwa Obtained by the proposed technique and the finite-differgéachnique [Lewis (1979)] are
presented in Table 2, showing a good agreement. Plots faretbeity vector and vorticity fields
for the case oRe = (1,700) are given in Figure 8.

w=

4.3 Example 3: Shear suspension flow

In this example, a single particle of raditsis suspended freely at the center of the reference
sliding bi-periodic frame of dimensionsxl1. The fluid domain is the region lying between the
particle and the frame (Figure 9). The fluid is Newtonian amy@s under a shear rage= 1. This
configuration can represent the system of an infinite numijgarticles as described in Figure 10.
It can be seen that the initial configuration is reproduceer #ifie time periodk = 1/y. The inertia

of the particle and fluid are ignored. This problem was stlidiging the fictitious-domain/finite-
element method in [Hwang, Hulsen, and Meijer (2004)]. Theegoing equations for the motion
of a fluid thus reduce to

%Yy 9%y
2 Tap =~ @ (66)
0°w 0%w
ERN Y Ak (67)

The boundary conditions of the frame are bi-periodic andmeihed through (33)-(40), while the
boundary conditions of the particle are computed using, (&8) and (59). However, owing to
only one particle considered, the valuefon dP is simply set to 0. The stress tensor can be
written in terms of the stream function and pressure as

2 %y Py %y

<_p+ Wdy) <a_y2 - W)

0= %y 9%y 0 0%y
( ay? 0x2 ) ( P dx&y)

Conventionally, the interacting hydrodynamic force andmaat are first calculated from the fluid
flow, and the movement of the particle is then determined fiteese force and moment using the

(68)
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Newton-Euler equations. Because the inertia of the particheglected and there is no external
force acting on the particle, the hydrodynamic force anduerare zero (force free and torque
free). It can be seen that the particle rotates about thecsfiaantre at the angular veloci€y and
does not translate relative to the frame, k.= 0 andV = 0. One thus only needs to use the
torque-free condition to determine the valueof

T=/ rx(o.n)ds=0. (69)
oP

The reader is referred to [Hwang, Hulsen, and Meijer (2002 Further details. Substitution of
(68) into (69) yields

f(xz—yz) (‘f_y‘g_f_x‘b ds=0. (70)

In this study, we propose a new way of obtainilgOn the particle boundary (Figure 5), one can

have
af  of af
95 Rtx‘l— d_yty’ (71)

wheref is a generic function, ang t, andt, are defined as before. By replacifig= d¢/0x, (71)
becomes

%Yy %y 2%y

asx o T ayaxY (72)
SinceU = 0 andV =0, (13) and (14) reduce to
oy
— =-Q 73
gy~ (73)
oy
I —Qx. (74)
Substituting (73) and (74) into (72) and making usé.ef —y/R andt, = x/R give

0%y
Q=-—7. (75)
Similarly, by replacingf = dy//dy, one has

2%y
Q= o (76)

These conditions (75) and (76) can be used as an alternat{V@}. In practice, (75) and (76) are
applied to the boundary points of the particle on Xrendy grid lines, respectively, from which
the angular velocity is derived in an average sense.

For each shear interval, the solution procedure is as fsllow
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1. Guess the distribution @b andy.

2. Discretise (66) and (67) using 1D-IRBFNs. The two systeatrizes arising from the dis-
cretisation of the Laplace operator are identical and reraachanged during the iteration
process.

. Impose the sliding bi-periodic boundary conditions ¢oandw on the frame.
. Derive computational boundary conditions ¢oion dP.

. Solve (66) forw and (67) fory.

. ComputeQ from (75) and (76).

~N o 0o B~ W

. Check the following convergence measure

n; —1)\ 2
. \/ s (W - w )
ey (‘»Ui(k)>2

wheren;,, is the number of interior point& the current iteration anelthe tolerance. In this
study, ¢ is taken to be 102,

<,

8. If not, relax the field solution
k k k—1
Wi( = O“l’i( )+(1—U)Wi( )
wherea is a given numbef0 < a < 1), and repeat from step 4. Otherwise, stop the
computation and save the results.

The particle’s radiu® is considered in the range ofl® to Q42. Simulations are carried out using
Cartesian grids whose densities vary fromx580 to 72x 72. Denser grids are used for larger
values ofR.

Figure 11 shows the variation 6f with respect to the shear time for some different valueR of
over the periok. It can be seen that the profile @fis symmetric about the vertical lirie= K /2.
The largest value of2 occurs when the frames line up in the vertical direction (Fég10a).
Furthermore, the fluctuation @ is an increasing function d®. In Figure 12, the distribution of
Y andw over a reference frame are multiplied to producegh&nd w fields on the original large
domain, where the sliding bi-periodic boundary conditians clearly observed.

Prediction of the bulk material properties
Following the work of Hwang, Hulsen, and Meijer (2004), thekbstress can be computed by

(o) = %/rerds (77)
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wherel' =T1NIMaNM3NIM4 andAis the area of the frame domainthe position vector and the
traction vector. In terms af, (77) takes the form

1 0? 0?
(O5) = 5 [ets= [ <a—y‘f—a—x"2’) dy, (78)
Zw dZw 02‘#
<GXX /XthS /r2 ( p+ dxdy) dy+ <d—yz — W) dx
92 92
—/ X(d—yf — d—xlg> dx, (79)
1 2%y

(Oy) = A/yty S= 2/ ( p+ dxdy) dx—é . (_p+dxc7y> dx, (80)

where the pressure drp andl; are computed using
_ [ 9P, _ oy %y
P= d_ydy_ _/r2 <W * dyzdx> dy.

[ dp, Yy By
p= [ o=, <W+axzay o

and the pressure dry is derived from the pressure én and the sliding periodic condition.

Results for the bulk shear stre&s,,) and the normal stresseés, — oyy) are plotted in Figure
13. When the distance between the particles in the slidiagdis is maximum (Figure 10b), the
bulk shear stress becomes maximum and the bulk normal Sieesses minimum. Both the bulk
shear and normal stresses become larger when the partials racreases and they oscillate with
the periodK.

The bulk shear viscosity can be obtained by taking the tinegame of the bulk shear stress over
the periodK [Hwang, Hulsen, and Meijer (2004)],

<Z> _ %/OK<axy>dt. (81)

In Figure 14,(n)/n is plotted against the solid area fractign(@ = niR?). In the case of dilute
suspensions with circular disks, the bulk shear viscosty lse computed byn) = (1+ 2¢)n
[Hwang, Hulsen, and Meijer (2004)]. The dilute suspensigsults are also plotted in Figure 14.
It can be seen that the present model produces larger valygs 07 than the dilute model. This
looks reasonable as the present simulations take theétitardoetween the particles into account.

The observations presented above are similar to thosetegpior [Hwang, Hulsen, and Meijer
(2004)]. Since the finite-element results were presentegtaph, we are not able to reproduce
them here. However, numerical results by the two techniqegar to be of comparable values,
judging from the graphical presentations.
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5 Concluding remarks

In this article, a new collocation method based on 1D-IRBfsléveloped for the simulation
of 2D particulate flows under simple shear conditions. 8{dbi-periodic frames are applied
to reduce the large domain to a small one. For the fluid compornike governing equations
are taken in the stream function - vorticity formulation aheé multiply-connected domain is
simply discretised using a Cartesian grid. For the particlmponent, a new efficient way, based
on direct point-wise calculations rather than line/sufaategrals, is proposed to compute the
angular velocity. Three examples concerning sliding bigatc conditions, particle-like boundary
conditions and shear particulate suspensions modelleddyparticle in each frame are simulated
successfully. The presently predicted bulk propertiesirargood agreement with those by the
fictitious-domain/finite-element method.
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and Australia’'s Commonwealth Scientific and Industrial é&sh Organisation for a postgraduate
scholarship. This research is supported by the Australese&ch Council.
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Table 1: Example 1: Errors of the solution and condition narslof the system matrix. It is noted
thata(b) represents x 10P.

Grid Ne Cond(A)
12x 12 3.11(-3) 1.6(3)
22x 22 4.96(-4) 5.1(3)
32x32  1.52(-4) 1.8(4)
42x 42 6.65(-5) 2.2(4)
52x 52 3.65(-5) 5.2(4)
62x 62 1.98(-5) 5.9(4)
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Table 2: Example 2 (rotating cylinder): Comparison of theamn-function value at the inner
cylinder, Yya1, between the present technique (grid of386) and finite difference technique for
different values oRe.

Re 100 500 1000
Ywall
Present 0.4637 0.4550 0.4511

[Lewis (1979) 0.4577 0.4465 0.4375




Figure 1: A patrticle-fluid system

23



24

i

Figure 2: Shear bi-periodic frames.
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Figure 3: A reference frame and its typical Cartesian-gisdretisation.
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Figure 4. Nodal points on a grid line consisting of interi@ims ; (o) and boundary points;

(©).
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Figure 5: A curved boundary of the particle: arclength, anitl mormal and tangential vectors.
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Figure 7: Example 2 (rotating cylinder): geometry.
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Figure 8: Example 2: Velocity vector field (left) and vorticiield (right) for the flow atRe

andRe

=700.
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Figure 9: Example 3: A reference frame (top) and its dissa¢iton (bottom).
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Figure 10: Example 3: Problem description with two instandering a period of shearing.
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Figure 11: Example 3: Profile of the angular velocity overpkeodK.
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Figure 12: Example 3: Streamlines and iso-vorticity linetha shear time of 0.3.
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Figure 13: Example 3: Variations of the bulk shear and nostrakses over the periéd
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2| = Analytic (Dilute)
+ | =0 = Numerical

(n)/n
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Figure 14: Example 3: Computed bulk viscosity. Analyticules for the dilute case are also
included.



