
Towards an analysis of shear suspension flows using radial basis
functions

K. Le-Cao 1, N. Mai-Duy1, C.-D. Tran1 and T. Tran-Cong1

Abstract: In this paper, radial basis functions are utilised for numerical prediction of the bulk
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Keywords: Integrated radial basis functions; Multiphase flows; Shearboundary conditions;
Bulk properties.

1 Introduction

Particulate suspensions, which involve transport of rigidparticles suspended in a fluid medium,
occur in many industrial processes such as slurries, colloids, fluidised beds, etc. Due to their great
structural and physical variety, the use of experiments to determine the macroscopic rheological
properties of these multiphase materials was seen to be impractical [Phan-Thien and Kim (1994)].
However, it may be possible to employ numerical simulationsto predict the bulk properties of mul-
tiphase materials. Various numerical models have been proposed. Among them, direct numerical
simulations (DNSs), which consist in solving the fundamental equations for particles (Newton-
Euler equation) and a fluid (Navier-Stokes equation) in a direct and fully-coupled manner, have
received a great deal of attention. Two main advantages of DNSs are that (i) they can handle
particles of different shapes and sizes as well as any type offluid and (ii) hydrodynamic forces
and moments can be calculated directly from the fluid flow. Difficulties faced by DNSs include
(i) a very large number of particles is typically required for a proper simulation and (ii) the fluid
domain is of very complex shape due to the presence of particles and the change of their positions
with time. Based on the fluid-phase solver employed, DNSs canbe classified into two categories.
In the first category, a mesh follows the movement of the particles, i.e. a moving mesh is used.
Methods based on the arbitrary Lagrangian-Eulerian (ALE) moving mesh approach proposed by
Hu, Joseph, and Crochet (1992) are widely used, e.g. [Hu (1995); Huang, Feng, Hu, and Joseph
(1997); Huang, Hu, and Joseph (1998)]. In the second category, a mesh covers the whole domain

1 Computational Engineering and Science Research Centre (CESRC), Faculty of Engineering and Surveying, Univer-
sity of Southern Queensland, Toowoomba, QLD 4350, Australia.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Queensland ePrints

https://core.ac.uk/display/11046579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


3

and is independent of the position of particles, i.e. a fixed mesh is used. Methods based on the
fictitious domain approach proposed by Glowinski, Pan, and Periaux (1998) are widely employed,
e.g. [Hwang, Hulsen, and Meijer (2004); Patankar, Singh, Joseph, Glowinski, and Pan (2000);
Singh, Joseph, Hesla, Glowinski, and Pan (2000)]. Hwang, Hulsen, and Meijer (2004) incorpo-
rated sliding bi-periodic frames, introduced by Lees and Edwards (1972) for molecular dynamics,
into the simulation of particulate flows. This concept allows the modelling of suspension systems
with infinite numbers of particles to be conducted through a small number of particles in a repre-
sentative reference sliding frame. The computational fluiddomain is thus small with bi-periodic
conditions on the frame and no-slip conditions on the surfaces of the particles.

Over the last two decades, radial basis functions (RBFs), proven to be universal approximators,
have been developed and applied to solve different types of differential problems encountered in
applied mathematics, science and engineering, e.g. [Fasshauer (2007); Kansa (1990); Le-Cao,
Mai-Duy, and Tran-Cong (2009); Sarler (2005)] and the references therein. RBF-based meth-
ods are extremely easy to implement and capable of achievinga high level of accuracy using a
relatively-small number of nodes. One can construct RBF-based approximations through differ-
entiation or integration. Since integration is a smoothingoperator, the latter has higher approx-
imation power than the former especially in the representation of derivative functions, e.g. [Le-
Cao, Mai-Duy, and Tran-Cong (2009); Mai-Duy and Tran-Cong (2001); Mai-Duy and Tran-Cong
(2003)].

In this paper, integrated RBFs (IRBFs) and point collocation are utilised in the context of bound-
ary fitted Cartesian grids and sliding bi-periodic frames for the direct simulation of flows of
Newtonian-based particulate systems. The remainder of thepaper is organised as follows. Section
2 gives a brief review of the governing equations and the concept of sliding frames. In Section
3, the proposed numerical procedure is described. Numerical results are presented in Section 4.
Section 5 concludes the paper.

2 Governing equations and sliding frames concept

2.1 Governing equations

Let Π be the entire computational domain, including the interiorregions occupied by the par-
ticles. LetPi(t) and ∂Pi(t) be the region and its boundary of theith particle of timet, where
i = (1,2, · · · ,N) andN is the number of particles (Figure 1).

Fluid motion: The laws of mass and momentum conservation for an incompressible fluid lead to

∇∇∇.u = 0, (1)

ρ f
Du
Dt

= ∇∇∇.σσσ , (2)

whereu is the velocity vector;ρ f the density of the fluid;σσσ the total stress tensor; andD[.]/Dt the
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material derivative defined as

D[.]

Dt
=

∂ [.]

∂ t
+(u.∇)[.]. (3)

For a Newtonian fluid, the total stress tensor is given by

σσσ = −pI +2ηD, (4)

where p is the hydrodynamic pressure;I the unit tensor;η the viscosity; andD the strain rate
tensor defined as

D =
1
2
[∇u+(∇u)T ]. (5)

In the case of 2D problems, the stream function - vorticity formulation has been widely employed
because of its simplicity. The governing equations (1), (2)and (4) can be rewritten as follows.

∂ 2ψ
∂x2 +

∂ 2ψ
∂y2 = ω , (6)

∂ω
∂ t

+ u
∂ω
∂x

+ v
∂ω
∂y

=
1

Re

(
∂ 2ω
∂x2 +

∂ 2ω
∂y2

)
, (7)

whereψ is the stream function;ω the vorticity;Re the Reynolds number; andu andv the compo-
nents ofu, which are defined in terms of the stream function as

u =
∂ψ
∂y

, v = −
∂ψ
∂x

.

The given velocity boundary conditions,u andv, can be transformed into two boundary conditions
on the stream function and its normal derivative

ψ = γ ,
∂ψ
∂n

= ξ ,

wheren is the direction normal to the boundary, andγ andξ prescribed functions.

Particle motion: Consider anith particle. The motion of the particle can be described by the
Newton-Euler equations

Mi
dUi

dt
= Fi, (8)

I i
dΩΩΩi

dt
= Ti, (9)
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whereMi, I i,Ui andΩΩΩi are the mass, inertia tensor, translational velocity vector of the mass centre
and angular velocity vector of theith particle, respectively; andFi andTi the force and torque
vectors acting on theith particle.

The force and torque vectors can be computed from the fluid flowas

Fi =
∮

∂Pi(t)
σσσ .nds, (10)

Ti =

∮

∂Pi(t)
r × (σσσ .n)ds, (11)

wherer is the position vector;n the outward unit vector normal to the boundary∂Pi andds the
length of an infinitesimal part of∂Pi.

Non-slip boundary conditions on the interface between the fluid and theith particle are given by

u = Ui + ΩΩΩi × r , (12)

where

Ui =
dXi

dt
,

ΩΩΩi =
dΘΘΘi

dt
,

in which Xi is the position vector of the mass center andΘΘΘi the orientation of theith particle. In
terms of the stream function, (12) becomes

∂ψ
∂y

= Ui −Ωiy (13)

∂ψ
∂x

= −Vi −Ωix, (14)

whereUi andVi are the two components ofU andΩi the magnitude ofΩΩΩi.

2.2 Sliding bi-periodic frames concept

Consider a particulate flow of very large domain under simpleshear conditions in thex direction.
One possible way to make such a large problem tractable is to simplify it using the concept of
sliding bi-periodic frames. The problem domain can be divided into a set of identical sliding
frames of widthL and heightH (Figure 2). Each frame translates along the shear directionat
its own average velocity. Rows of frames slide relatively toone another by an amount∆ = γ̇Ht,
whereγ̇ is the given shear rate,H height of the frame andt shear time [Hwang, Hulsen, and Meijer
(2004)].



6

Because frames have similar solutions, we consider only oneframe. If particles in a frame are
ignored, it can be seen that the velocity profile is linear

u = u0 + γ̇y, (15)

v = 0, (16)

where the origin of thex− y coordinate system is located at the centre of the frame;u0 the trans-
lation velocity of the frame and−H/2≤ y ≤ H/2. With the presence of particles, one has

u = û + u0+ γ̇y, (17)

v = v̂, (18)

whereû andv̂ are the perturbations from the linear profile.

Since the solution is continuous across sliding frames, thefollowing bi-periodic boundary condi-
tions for the velocityu and the tractionτττ can be applied to each frame

u(−L/2,y, t) = u(L/2,y, t), −H/2≤ y ≤ H/2, (19)

τττ(−L/2,y, t) = τττ(L/2,y, t), −H/2≤ y ≤ H/2, (20)

for the two vertical faces, and

u(x,−H/2, t) = u(x+ γ̇Ht,H/2, t)+ (γ̇H,0)T , −L/2≤ x ≤ L/2, (21)

τττ(x,−H/2, t) = τττ(x+ γ̇Ht,H/2, t), −L/2≤ x ≤ L/2, (22)

for the two horizontal faces.

3 Proposed technique

In this study, we propose a numerical procedure based on IRBFs and sliding frames for the sim-
ulation of particulate suspensions under simple shear conditions. The fluid domain in a refer-
ence frame is simply discretised using a Cartesian gridnx × ny. Let Γ1,Γ2,Γ3 and Γ4 be the
sides of the reference frame (Figure 3). IRBFs are employed on each grid line to represent the
field variablesψ and ω (one-dimensional IRBFs). Sliding bi-periodic boundary conditions are
presently implemented by means of point collocation ratherthan the Lagrange multipliers used
in [Hwang, Hulsen, and Meijer (2004)]. The proposed procedure combines strengths of three
approaches, namely IRBFs (high-order accuracy), Cartesian grids (easy preprocessing) and the
sliding bi-periodic frames concept (infinite number of particles). To our best knowledge, this is
a first attempt to use RBFs for the analysis of shear particulate flows. In the following, details
are presented for the three constituent components of the proposed procedure. 1D-IRBFs are first
described. Sliding bi-periodic boundary conditions are then expressed in terms of the stream func-
tion and implemented with IRBFs and point collocation. Finally, suitable formulas and their IRBF
implementation are presented for computing the boundary values on the particles.
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3.1 1D-IRBFs

Consider a grid line that can be bounded by two faces of the frame, the boundaries of two particles,
or the boundary of the particle and the frame. Assume a grid line in thex direction and letf be
the field variable. We use IRBFs to approximatef . The construction procedure is as follows.

Second-order derivative off along a grid line can be decomposed into RBFs

∂ 2 f (x)
∂x2 =

m

∑
i=1

wigi(x) =
m

∑
i=1

wiI
(2)
i (x), (23)

wherem is the number of RBFs;{gi(x)}
m
i=1 ≡

{
I(2)
i (x)

}m

i=1
the set of RBFs;{wi}

m
i=1 the set

of weights to be found andf representsψ andω . Approximate expressions for the first-order
derivative and the field variable are then obtained through integration

∂ f (x)
∂x

=
m

∑
i=1

wiI
(1)
i (x)+ c1, (24)

f (x) =
m

∑
i=1

wiI
(0)
i (x)+ c1x+ c2, (25)

whereI(1)
i (x) =

∫
I(2)
i (x)dx andI(0)

i (x) =
∫

I(1)
i (x)dx. In this study, IRBFs are implemented with

the multiquadric (MQ) function and one thus has

I(2)
i (x) =

√
(x− ci)2 + a2

i , (26)

I(1)
i (x) =

(x− ci)

2
A +

a2
i

2
B, (27)

I(0)
i (x) =

(
−a2

i

3
+

(x− ci)
2

6

)
A +

a2
i (x− ci)

2
B, (28)

whereci andai are the centre and the width of theith MQ, respectively;A =
√

(x− ci)2 + a2
i ; and

B = ln

(
(x− ci)+

√
(x− ci)2 + a2

i

)
. We choose the grid sizeh as the RBF widthai. The set of

collocation points{xi}
m
i=1 is taken to be the same as the set of centres{ci}

m
i=1.

As shown in Figure 4, a grid line contains two sets of nodal points. The first set consists ofq
interior points that are also the grid nodes (regular nodes). The function values at the interior
points ({xi}

q
i=1) are unknown. The second set consists of the two nodesxb1 andxb2 which are

generated by the intersection of the grid line and the boundaries.

Collocating (25) at the nodal points yields



f̂

f (xb1)
f (xb2)



 = Î
(0)




ŵ
c1

c2



 , (29)
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where

f̂ = ( f (x1), f (x2), · · · , f (xq))
T ,

ŵ = (w1,w2, · · · ,wm)T ,

Î
(0) =





I(0)
1 (x1) I(0)

2 (x1) · · · I(0)
m (x1) x1 1

I(0)
1 (x2) I(0)

2 (x2) · · · I(0)
m (x2) x2 1

...
...

. . .
...

...
...

I(0)
1 (xq) I(0)

2 (xq) · · · I(0)
m (xq) xq 1

I(0)
1 (xb1) I(0)

2 (xb1) · · · I(0)
m (xb1) xb1 1

I(0)
1 (xb2) I(0)

2 (xb2) · · · I(0)
m (xb2) xb2 1





,

m = q+2.

Solving (29) for the coefficient vector, including the two integration constants, results in



ŵ
c1

c2



 =
(
Î

(0)
)−1




f̂

f (xb1)
f (xb2)



 , (30)

where
(
Î (0)

)−1
is the generalised inverse.

Making use of (30), the values of the first and second derivatives of f at the interior points are
computed in terms of nodal variable values




∂ f (x1)
∂x

∂ f (x2)
∂x
...

∂ f (xq)
∂x




= Î

(1)
(
Î

(0)
)−1




f̂

f (xb1)
f (xb2)



 , (31)

and




∂ 2 f (x1)
∂x2

∂ 2 f (x2)
∂x2

...
∂ 2 f (xq)

∂x2




= Î

(2)
(
Î

(0)
)−1




f̂

f (xb1)
f (xb2)



 , (32)

where

Î
(1) =





I(1)
1 (x1) I(1)

2 (x1) · · · I(1)
m (x1) 1 0

I(1)
1 (x2) I(1)

2 (x2) · · · I(1)
m (x2) 1 0

...
...

. ..
...

...
...

I(1)
1 (xq) I(1)

2 (xq) · · · I(1)
m (xq) 1 0




,
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and

Î
(2) =





g1(x1) g2(x1) · · · gm(x1) 0 0
g1(x2) g2(x2) · · · gm(x2) 0 0

...
...

. ..
...

...
...

g1(xq) g2(xq) · · · gm(xq) 0 0



 .

It can be seen from (31) and (32) that Dirichlet conditions atxb1 andxb2 are incorporated into the
IRBFN approximations. Depending on how a grid line is bounded, the boundary pointsxb1 and
xb2 have particular locations. For example, one has (xb1 ∈ Γ2 andxb2 ∈Γ4) if a grid line is bounded
by the two vertical faces of the frame, and (xb1 ∈ Γ2 andxb2 ∈ ∂Pi) if the boundary surfaces are
the left face and theith particle boundary.

In the same manner, one can obtain the IRBFN expressions for an y grid line.

3.2 Sliding bi-periodic boundary conditions

The continuity of the stream function and the vorticity across two adjacent sliding frames leads to
the following periodic boundary conditions [Anderson, Keestra, and Hulsen (2006)]

ψ(−L/2,y, t) = ψ(L/2,y, t), −H/2≤ y ≤ H/2, (33)

∂ψ
∂x

(−L/2,y, t) =
∂ψ
∂x

(L/2,y, t), −H/2≤ y ≤ H/2, (34)

ω(−L/2,y, t) = ω(L/2,y, t), −H/2≤ y ≤ H/2, (35)

∂ω
∂x

(−L/2,y, t) =
∂ω
∂x

(L/2,y, t), −H/2≤ y ≤ H/2, (36)

for the two vertical faces and

ψ(x,−H/2, t) = ψ(x+ γ̇Ht,H/2, t), −L/2≤ x ≤ L/2, (37)

∂ψ
∂y

(x,−H/2, t) =
∂ψ
∂y

(x+ γ̇Ht,H/2, t)+ γ̇H, −L/2≤ x ≤ L/2, (38)

ω(x,−H/2, t) = ω(x+ γ̇Ht,H/2, t), −L/2≤ x ≤ L/2, (39)

∂ω
∂y

(x,−H/2, t) =
∂ω
∂y

(x+ γ̇Ht,H/2, t), −L/2≤ x ≤ L/2, (40)

for the two horizontal faces.

Consider the stream functionψ . The values ofψ are unknown not only at the interior points
(xi,y j) with 2 ≤ i ≤ nx − 1 and 2≤ j ≤ ny − 1 but also at the boundary points of the reference
frame(−L/2,y j), (L/2,y j), (xi,−H/2) and(xi,H/2) with 1≤ j ≤ ny and 2≤ i ≤ nx −1. There
are 2ny + 2(nx − 2) unknowns for the latter, leading tonip + 2ny + 2(nx −2) unknowns in total,
wherenip is the number of interior points. Apart from collocating thegoverning equation for
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ψ at the interior points, one also needs to generate 2ny + 2(nx −2) extra equations which can be
achieved by using the bi-periodic boundary conditions (33), (34), (37) and (38). Details are as
follows.

ψ(−L/2,y j)−ψ(L/2,y j) = 0, 1≤ j ≤ ny, (41)

∂ψ
∂x

(−L/2,y j)−
∂ψ
∂x

(L/2,y j) = 0, 1≤ j ≤ ny, (42)

ψ(xi,−H/2)−ψ(xi + γ̇Ht,H/2) = 0, 2≤ i ≤ nx −1, (43)

∂ψ
∂y

(xi,−H/2)−
∂ψ
∂y

(xi + γ̇Ht,H/2)− γ̇H = 0, 2≤ i ≤ nx −1, (44)

where the time variablet is left out for the sake of simplicity.

In (41)-(44), one needs to express∂ψ(L/2,y j)/∂x, ∂ψ(−L/2,y j)/∂x, ∂ψ(xi,−H/2)/∂y, ψ(xi +
γ̇Ht,H/2) and∂ψ(xi + γ̇Ht,H/2)/∂y in terms of nodal values ofψ .

For ∂ψ(±L/2,y j)/∂x, the following IRBF expressions are obtained by collocating (24) atx =
±L/2 and then making use of (30)

∂ψ
∂x

(L/2,y j) = [I(1)
1 (L/2), · · · , I(1)

m (L/2),1,0]
(
Î

(0)
)−1




ψ̂

ψ(xb1,y j)
ψ(L/2,y j)



 , (45)

∂ψ
∂x

(−L/2,y j) = [I(1)
1 (−L/2), · · · , I(1)

m (−L/2),1,0]
(
Î

(0)
)−1




ψ̂

ψ(−L/2,y j)
ψ(xb2,y j)



 . (46)

Similarly, one can obtain

∂ψ
∂y

(xi,−H/2) = [I(1)
1 (−H/2), · · · , I(1)

m (−H/2),1,0]
(
Î

(0)
)−1




ψ̂

ψ(xi,−H/2)
ψ(xi,yb2)



 . (47)

For ψ(xi + γ̇Ht,H/2), collocating (25) atxi + γ̇Ht and then making use of (30) lead to

ψ(x̄,H/2) = [I(0)
1 (x̄i), · · · , I

(0)
m (x̄i), x̄i,1]

(
Î

(0)
)−1




ψ̂

ψ(−L/2,H/2)
ψ(L/2,H/2)



 , (48)

where ¯xi = xi + γ̇Ht. The process of deriving the IRBF expression for∂ψ(xi + γ̇Ht,H/2)/∂y is
similar to that forψ(xi + γ̇Ht,H/2).

Sliding bi-periodic boundary conditions for the vorticityare also obtained in a similar fashion.
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3.3 Boundary conditions on the particles’ boundaries

3.3.1 Boundary conditions for the stream function

The values of the stream functionψ on the boundary of each particlePi are constant because of
u(x).n = 0 wherex ∈ ∂Pi andn is the outward unit vector normal to∂Pi. Particles have their
own boundary values ofψ which are unknown. To find these unknowns, Lewis (1979) suggested
using the condition that the pressure is a single-valued function on the boundary of a particle. This
condition can be mathematically described as

∮

∂Pi

∂ p
∂ s

ds =
∮

∂Pi

∇p ·d~s = 0, (49)

wherep is the pressure ands the arc length. In the Cartesian coordinate system, (49) becomes

∮ ∂ p
∂x

dx +

∮ ∂ p
∂y

dy = 0. (50)

The pressure gradient∇p can be obtained from the momentum equations in the primitivevariable
form. By replacingu = ∂ψ/∂y andv =−∂ψ/∂x, one can express the components of∇p in terms
of the stream function and its derivatives.

3.3.2 Boundary conditions for the vorticity

The values of the vorticity on∂Pi can be computed via

ω =
∂ 2ψ
∂x2 +

∂ 2ψ
∂y2 , x ∈ ∂Pi. (51)

The handling of (51) thus involves the evaluation of second-order derivatives of the stream function
in both x andy directions. Unfortunately, the boundary points on∂Pi do not generally coincide
with the grid nodes and hence they lie on eitherx or y grid lines. In [Le-Cao, Mai-Duy, and
Tran-Cong (2009)], we proposed the following formulae

ω =

[

1+

(
tx
ty

)2
]

∂ 2ψ
∂x2 −

tx
t2
y

∂ 2ψ
∂x∂ s

+
1
ty

∂ 2ψ
∂y∂ s

, x ∈ ∂Pi, (52)

for thex grid lines, and

ω =

[
1+

(
ty
tx

)2
]

∂ 2ψ
∂y2 −

ty
t2
x

∂ 2ψ
∂y∂ s

+
1
tx

∂ 2ψ
∂x∂ s

, x ∈ ∂Pi, (53)

for the y grid lines. In (52) and (53),tx andty are thex andy components of the unit tangential
vector and∂ (.)/∂ s represents the derivative of(.) on∂Pi which is known (Figure 5). The boundary
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conditions for the vorticity are thus written in terms of thesecond derivative ofψ with respect to
x or y only.

In the case that theith particle is of circular shape of radiusRi and rotates about the centre of
the reference frame at the angular velocityΩi. Expressions for computingtx, ty, ∂ 2ψ/∂x∂ s and
∂ 2ψ/∂y∂ s become

tx =
−y√

x2 + y2
, (54)

ty =
x√

x2 + y2
, (55)

∂ 2ψ
∂x∂ s

=
1
Ri

Ωiy, (56)

∂ 2ψ
∂y∂ s

= −
1
Ri

Ωix. (57)

Substitution of (54)-(57) into (52) and (53) yields

ω =

[
1+

(y
x

)2
]

∂ 2ψ
∂x2 +

[(y
x

)2
−1

]
Ωi, x ∈ ∂Pi, (58)

ω =

[

1+

(
x
y

)2
]

∂ 2ψ
∂y2 +

[(
x
y

)2

−1

]

Ωi, x ∈ ∂Pi. (59)

The IRBF implementation of (50) is straightforward, while special treatments are required in han-
dling (52)-(53) and (58)-(59). For the latter, normal derivative boundary conditions for the stream
function, i.e. ∂ψ/∂n, need be incorporated into expressions (52), (53), (58) and(59). Sinceψ
and ∂ψ/∂n are known from the previous iteration, one can easily obtainthe values of∂ψ/∂x
and∂ψ/∂y on ∂Pi. The proposed procedure imposes∂ψ/∂n, i.e. ∂ψ/∂x and∂ψ/∂y, using the
constants of integration. On anx grid line, one needs to incorporate∂ψ/∂x into ∂ 2ψ/∂x2, while
on any grid line, ∂ψ/∂y is incorporated into∂ 2ψ/∂y2. Because these two processes are similar,
details are given here for anx grid line only, e.g. the one withxb1 ∈ Γ2 andxb2 ∈ ∂Pi. The system
for the conversion of the RBF space into the physical space (29) now takes the form





ψ̂
ψ(xb1)
ψ(xb2)
∂ψ
∂x (xb2)



 =

(
Î (0)

B

) 


ŵ
c1

c2



 , (60)

where the conversion matrix is of dimensions(m +1)× (m +2) and

B =
[
I(1)
1 (xb2), I

(1)
2 (xb2), · · · , I

(1)
m (xb2),1,0

]
.
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Using (60), one obtains the following from (23) (in whichf ≡ ψ andx ≡ xb2)

∂ 2ψ
∂x2 (xb2) = [g1(xb2),g2(xb2), · · · ,gm(xb2),0,0]

(
Î (0)

B

)−1





ψ̂
ψ(xb1)
ψ(xb2)
∂ψ
∂x (xb2)



 . (61)

Since the conversion matrix in (60) is not over-determined,the IRBFN approximation for∂ 2ψ(xb2)/∂x2

satisfies∂ψ/∂x at x = xb2 identically. This imposition shows a clear advantage of IRBFs over the
usual differentiated approximations. Substituting (61) into (52), one is able to obtain the boundary
conditions on∂Pi for the vorticity equation. It is noted that given∂ψ/∂x and∂ψ/∂y on ∂Pi, the
terms∂ 2ψ/∂x∂ s and∂ 2ψ/∂y∂ s in (52) and (53) are known.

4 Numerical examples

In this section, the proposed procedure is validated through three examples. The first example
examines the performance of the present technique in the implementation of sliding bi-periodic
boundary conditions of the frame. The second example investigates the accuracy of the present
technique in the handling of boundary conditions that are similar to those on the particles’ bound-
aries. In the third example, the proposed method is applied to simulate a shear flow of a Newtonian-
based particulate system, which is modelled by one particlesuspended in a sliding rectangular
frame. For all numerical examples, the problem domain is discretised using a uniform Cartesian
grid. The interior points that fall very close to the curved/irregular boundary (within a distance of
h/8, h - the grid size) are removed from the set of nodal points.

4.1 Example 1: Sliding bi-periodic boundary conditions

In this example, the 1D-IRBF implementation of shear bi-periodic boundary conditions is vali-
dated. The test problem is governed by

∂ 2ψ
∂x2 +

∂ 2ψ
∂y2 = b(x,y). (62)

The domain of interest is the region lying between a circle ofradius 1/4 and a square of dimensions
1×1 which are both centered at the origin. The exact solution is

ψ(x,y) = sin(π(x− γ̇yt))sin(πy), (63)

from which the driving functionb(x,y) in (62) and the Dirichlet boundary conditions on the hole
can be easily derived. The value ofγ̇ is set to 1. This problem is taken from [Anderson, Keestra,
and Hulsen (2006)].
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The accuracy of an approximation scheme is measured by meansof the discrete relativeL2 error
defined as

Ne =

√
∑M

i=1(ψe
i −ψi)2

√
∑M

i=1(ψe
i )2

, (64)

whereM is the number of unknown nodal values ofψ , andψe andψ are the exact and approximate
solutions, respectively. Another important measure is theconvergence rate of the solution with
respect to the grid refinement

Ne(h) ≈ γhα = O(hα), (65)

in which α andγ are exponential model’s parameters. Given a set of observations, these parame-
ters can be found by the general linear least squares technique.

A number of grids, namely(12× 12,22× 22, · · · ,62× 62), are employed for the convergence
study. Results concerning the condition number of the system matrix, denoted by cond(A), and
the errorNe at t = 0 are listed in Table 1. It can be seen that the present system matrix has
relatively-low condition numbers and the solution converges fast at the rate of 2.94.

Contour plots forψ at different values of the shear timet, namely(0,0.5,0.75,1), using a grid of
42×42 are shown in Figure 6. Exact solutions are also included. The two solutions are indistin-
guishable.

4.2 Example 2: A rotating circular cylinder

In this test problem, the 1D-IRBF implementation of boundary conditions of particles is validated
through the simulation of the flow of a Newtonian fluid shown inFigure 7. The inner cylinder
rotates at a unit angular velocity while the outer cylinder is stationary. The value ofψ on the outer
wall is simply set to zero, while the value ofψ on the inner wall is considered as an unknown,
denoted byψwall . The flow is governed by (6) and (7) and subject to the boundaryconditions

ψ =
∂ψ
∂x

=
∂ψ
∂y

= 0,

on the outer cylinder and

ψ = ψwall ,
∂ψ
∂x

= −x,
∂ψ
∂y

= −y,
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on the inner cylinder. Using (58) and (59) withΩ = 1, the vorticity boundary values on the rotating
cylinder can be computed by

ω =

[
1+

(y
x

)2
]

∂ 2ψ
∂x2 +

[(y
x

)2
−1

]
,

ω =

[
1+

(
x
y

)2
]

∂ 2ψ
∂y2 +

[(
x
y

)2

−1

]
.

The value ofψwall is found using the single-valued pressure condition as discussed earlier.

The flow is simulated withR = 0.25 andL = 1.0 using a uniform grid of 36×36. Different values
of the Reynolds number, namely (1, 100, 500, 700, 1000), are considered. Results concerning
ψwall obtained by the proposed technique and the finite-difference technique [Lewis (1979)] are
presented in Table 2, showing a good agreement. Plots for thevelocity vector and vorticity fields
for the case ofRe = (1,700) are given in Figure 8.

4.3 Example 3: Shear suspension flow

In this example, a single particle of radiusR is suspended freely at the center of the reference
sliding bi-periodic frame of dimensions 1×1. The fluid domain is the region lying between the
particle and the frame (Figure 9). The fluid is Newtonian and moves under a shear rateγ̇ = 1. This
configuration can represent the system of an infinite number of particles as described in Figure 10.
It can be seen that the initial configuration is reproduced after the time periodK = 1/γ̇ . The inertia
of the particle and fluid are ignored. This problem was studied using the fictitious-domain/finite-
element method in [Hwang, Hulsen, and Meijer (2004)]. The governing equations for the motion
of a fluid thus reduce to

∂ 2ψ
∂x2 +

∂ 2ψ
∂y2 = ω , (66)

∂ 2ω
∂x2 +

∂ 2ω
∂y2 = 0. (67)

The boundary conditions of the frame are bi-periodic and determined through (33)-(40), while the
boundary conditions of the particle are computed using (50), (58) and (59). However, owing to
only one particle considered, the value ofψ on ∂P is simply set to 0. The stress tensor can be
written in terms of the stream function and pressure as

σσσ =





(
−p+2 ∂ 2ψ

∂x∂y

) (
∂ 2ψ
∂y2 − ∂ 2ψ

∂x2

)

(
∂ 2ψ
∂y2 − ∂ 2ψ

∂x2

) (
−p+2 ∂ 2ψ

∂x∂y

)



 . (68)

Conventionally, the interacting hydrodynamic force and moment are first calculated from the fluid
flow, and the movement of the particle is then determined fromthese force and moment using the
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Newton-Euler equations. Because the inertia of the particle is neglected and there is no external
force acting on the particle, the hydrodynamic force and torque are zero (force free and torque
free). It can be seen that the particle rotates about the frame centre at the angular velocityΩ and
does not translate relative to the frame, i.e.U = 0 andV = 0. One thus only needs to use the
torque-free condition to determine the value ofΩ

T =
∫

∂P
r × (σσσ .n)ds = 0. (69)

The reader is referred to [Hwang, Hulsen, and Meijer (2004)]for further details. Substitution of
(68) into (69) yields
∮

(x2− y2)

(
∂ 2ψ
∂y2 −

∂ 2ψ
∂x2

)
ds = 0. (70)

In this study, we propose a new way of obtainingΩ. On the particle boundary (Figure 5), one can
have

∂ f
∂ s

=
∂ f
∂x

tx +
∂ f
∂y

ty, (71)

where f is a generic function, ands, tx andty are defined as before. By replacingf = ∂ψ/∂x, (71)
becomes

∂ 2ψ
∂ s∂x

=
∂ 2ψ
∂x2 tx +

∂ 2ψ
∂y∂x

ty. (72)

SinceU = 0 andV = 0, (13) and (14) reduce to

∂ψ
∂y

= −Ωy, (73)

∂ψ
∂x

= −Ωx. (74)

Substituting (73) and (74) into (72) and making use oftx = −y/R andty = x/R give

Ω = −
∂ 2ψ
∂x2 . (75)

Similarly, by replacingf = ∂ψ/∂y, one has

Ω = −
∂ 2ψ
∂y2 . (76)

These conditions (75) and (76) can be used as an alternative to (70). In practice, (75) and (76) are
applied to the boundary points of the particle on thex andy grid lines, respectively, from which
the angular velocity is derived in an average sense.

For each shear interval, the solution procedure is as follows.
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1. Guess the distribution ofω andψ .

2. Discretise (66) and (67) using 1D-IRBFNs. The two system matrices arising from the dis-
cretisation of the Laplace operator are identical and remain unchanged during the iteration
process.

3. Impose the sliding bi-periodic boundary conditions forψ andω on the frame.

4. Derive computational boundary conditions forω on ∂P.

5. Solve (66) forω and (67) forψ .

6. ComputeΩ from (75) and (76).

7. Check the following convergence measure

CM =

√
∑nip

i=1

(
ψ(k)

i −ψ(k−1)
i

)2

√
∑nip

i=1

(
ψ(k)

i

)2
< ε ,

wherenip is the number of interior points,k the current iteration andε the tolerance. In this
study,ε is taken to be 10−12.

8. If not, relax the field solution

ψ(k)
i = αψ(k)

i +(1−α)ψ(k−1)
i ,

where α is a given number(0 < α < 1), and repeat from step 4. Otherwise, stop the
computation and save the results.

The particle’s radiusR is considered in the range of 0.15 to 0.42. Simulations are carried out using
Cartesian grids whose densities vary from 50× 50 to 72× 72. Denser grids are used for larger
values ofR.

Figure 11 shows the variation ofΩ with respect to the shear time for some different values ofR
over the periodK. It can be seen that the profile ofΩ is symmetric about the vertical linet = K/2.
The largest value ofΩ occurs when the frames line up in the vertical direction (Figure 10a).
Furthermore, the fluctuation ofΩ is an increasing function ofR. In Figure 12, the distribution of
ψ andω over a reference frame are multiplied to produce theψ andω fields on the original large
domain, where the sliding bi-periodic boundary conditionsare clearly observed.

Prediction of the bulk material properties

Following the work of Hwang, Hulsen, and Meijer (2004), the bulk stress can be computed by

〈σσσ〉 =
1
A

∫

Γ
xτττT ds, (77)
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whereΓ = Γ1∩Γ2∩Γ3∩Γ4 andA is the area of the frame domain,x the position vector andτττ the
traction vector. In terms ofψ , (77) takes the form

〈σxy〉 =
1
A

∫

Γ
ytxds =

∫

Γ1

(
∂ 2ψ
∂y2 −

∂ 2ψ
∂x2

)
dy, (78)

〈σxx〉 =
1
A

∫

Γ
xtxds =

∫

Γ2

(
−p+

∂ 2ψ
∂x∂y

)
dy+

∫

Γ3

x

(
∂ 2ψ
∂y2 −

∂ 2ψ
∂x2

)
dx

−

∫

Γ1

x

(
∂ 2ψ
∂y2 −

∂ 2ψ
∂x2

)
dx, (79)

〈σyy〉 =
1
A

∫

Γ
ytyds =

1
2

∫

Γ3

(
−p+

∂ 2ψ
∂x∂y

)
dx−

1
2

∫

Γ1

(
−p+

∂ 2ψ
∂x∂y

)
dx, (80)

where the pressure onΓ2 andΓ1 are computed using

p =

∫

Γ2

∂ p
∂y

dy = −

∫

Γ2

(
∂ 3ψ
∂x3 +

∂ 3ψ
∂y2∂x

)
dy,

p =
∫

Γ1

∂ p
∂x

dx =
∫

Γ1

(
∂ 3ψ
∂y3 +

∂ 3ψ
∂x2∂y

)
dx,

and the pressure onΓ3 is derived from the pressure onΓ1 and the sliding periodic condition.

Results for the bulk shear stress〈σxy〉 and the normal stresses〈σxx −σyy〉 are plotted in Figure
13. When the distance between the particles in the sliding frames is maximum (Figure 10b), the
bulk shear stress becomes maximum and the bulk normal stressbecomes minimum. Both the bulk
shear and normal stresses become larger when the particle radius increases and they oscillate with
the periodK.

The bulk shear viscosity can be obtained by taking the time average of the bulk shear stress over
the periodK [Hwang, Hulsen, and Meijer (2004)],

〈η〉

η
=

1
K

∫ K

0
〈σxy〉dt. (81)

In Figure 14,〈η〉/η is plotted against the solid area fractionφ (φ = πR2). In the case of dilute
suspensions with circular disks, the bulk shear viscosity can be computed by〈η〉 = (1+ 2φ)η
[Hwang, Hulsen, and Meijer (2004)]. The dilute suspension results are also plotted in Figure 14.
It can be seen that the present model produces larger values of 〈η〉/η than the dilute model. This
looks reasonable as the present simulations take the interaction between the particles into account.

The observations presented above are similar to those reported in [Hwang, Hulsen, and Meijer
(2004)]. Since the finite-element results were presented ingraph, we are not able to reproduce
them here. However, numerical results by the two techniquesappear to be of comparable values,
judging from the graphical presentations.
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5 Concluding remarks

In this article, a new collocation method based on 1D-IRBFs is developed for the simulation
of 2D particulate flows under simple shear conditions. Sliding bi-periodic frames are applied
to reduce the large domain to a small one. For the fluid component, the governing equations
are taken in the stream function - vorticity formulation andthe multiply-connected domain is
simply discretised using a Cartesian grid. For the particlecomponent, a new efficient way, based
on direct point-wise calculations rather than line/surface integrals, is proposed to compute the
angular velocity. Three examples concerning sliding bi-periodic conditions, particle-like boundary
conditions and shear particulate suspensions modelled by one particle in each frame are simulated
successfully. The presently predicted bulk properties arein good agreement with those by the
fictitious-domain/finite-element method.

Acknowledgement: The first author would like to thank the University of Southern Queensland
and Australia’s Commonwealth Scientific and Industrial Research Organisation for a postgraduate
scholarship. This research is supported by the Australian Research Council.
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Table 1: Example 1: Errors of the solution and condition numbers of the system matrix. It is noted
thata(b) representsa×10b.

Grid Ne Cond(A)
12×12 3.11(-3) 1.6(3)
22×22 4.96(-4) 5.1(3)
32×32 1.52(-4) 1.8(4)
42×42 6.65(-5) 2.2(4)
52×52 3.65(-5) 5.2(4)
62×62 1.98(-5) 5.9(4)



22

Table 2: Example 2 (rotating cylinder): Comparison of the stream-function value at the inner
cylinder,ψwall , between the present technique (grid of 36×36) and finite difference technique for
different values ofRe.

Re 100 500 1000
ψwall

Present 0.4637 0.4550 0.4511
[Lewis (1979)] 0.4577 0.4465 0.4375
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Figure 1: A particle-fluid system
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Figure 2: Shear bi-periodic frames.
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Γ1
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Γ4

Figure 3: A reference frame and its typical Cartesian-grid discretisation.
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x1 x2 xq

xb1 xb2

Figure 4: Nodal points on a grid line consisting of interior points xi (◦) and boundary pointsxbi

(2).
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Figure 5: A curved boundary of the particle: arclength, and unit normal and tangential vectors.
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Figure 6: Example 1: Contour plots of the approximate and exact solutions at different time values.
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Figure 7: Example 2 (rotating cylinder): geometry.
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Figure 8: Example 2: Velocity vector field (left) and vorticity field (right) for the flow atRe = 1
andRe = 700.
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Figure 9: Example 3: A reference frame (top) and its discretisation (bottom).
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t = 0 t = K/2

(a) (b)

Figure 10: Example 3: Problem description with two instances during a period of shearing.
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Figure 11: Example 3: Profile of the angular velocity over theperiodK.
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Figure 12: Example 3: Streamlines and iso-vorticity lines at the shear time of 0.3.
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Figure 13: Example 3: Variations of the bulk shear and normalstresses over the periodK.
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Figure 14: Example 3: Computed bulk viscosity. Analytic results for the dilute case are also
included.


