
[..1][..2][..3][..4][..5]

1removed: M. Wermelinger, Y. Yu
2removed: Computing Department
3removed: Centre for Research in Computing, The Open University, UK
4removed: A. Lozano
5removed: Département d’Ingénierie Informatique, Université catholique de Louvain, Belgium

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/9633561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Assessing Architectural Evolution: a Case Study

Michel Wermelinger · Yijun Yu · Angela Lozano ·
Andrea Capiluppi

the date of receipt and acceptance should be inserted later

Abstract This paper proposes to use a historical perspective on generic laws, principles,
and guidelines, like Lehman’s software evolution laws and Martin’s design principles, in
order to achieve a multi-faceted process and structural assessment of a system’s architec-
tural evolution. We present a simple structural model with associated historical metrics and
visualizations that could form part of an architect’s dashboard.

We perform such an assessment for the Eclipse SDK, as a case study of a large, complex,
and long-lived system for which sustained effective architectural evolution is paramount.
The twofold aim of checking generic principles on a well-know system is, on the one hand,
to see whether there are certain lessons that could be learned for best practice of architec-
tural evolution, and on the other hand to get more insights about the applicability of such
principles. We find that while the Eclipse SDK does follow several of the laws and prin-
ciples, there are some deviations, and we discuss areas of architectural improvement and
limitations of the assessment approach.

1 Motivation

The first law of software evolution (continuous change) states that systems “must be continu-
ally adapted else they become progressively less satisfactory”, and the sixth law (continuous
growth) states that the “functional content must be continually increased to maintain user
satisfaction over their lifetime” (Lehman et al 1997). The success of a system—and we mean
continuous success, not the equivalent of a musical one hit wonder—hence depends in part
on sustaining its evolution for a period of time.

M. Wermelinger, Y. Yu
Computing Department & Centre for Research in Computing, The Open University, UK
E-mail: {m.a.wermelinger, y.yu}@open.ac.uk
A. Lozano
Département d’Ingénierie Informatique, Université catholique de Louvain, Belgium
E-mail: angela.lozano@uclouvain.be
A. Capiluppi
School of Computing, Information Technology and Engineering, University of East London, UK
E-mail: a.capiluppi@uel.ac.uk

3

That evolution is a key aspect has been realized for a long time: throughout the years, a
vast amount of advice, guidelines and techniques has been proposed in the literature to facil-
itate the eventual changes to a system’s requirements, design and implementation. Advice
varies in the way future changes are made easier, e.g. through usage of language-specific
features (Bloch 2001), paradigm-specific catalogues of generic solutions to recurring prob-
lems (Ben-Ari 1982; Gamma et al 1995), or general principles (Martin 1997).

Approaches to support evolution are particularly beneficial for systems that are large and
complex, and hence difficult to maintain, and have many users they have to continuously
satisfy. Such systems require a clean architecture that captures the major design decisions
that influence not only the structure, but also the behavioural interactions, the development,
and the business position of the system (Medvidovic et al 2007).

Given the importance of evolution and architecture for many systems, this paper fo-
cusses on architectural evolution, which can be seen from two perspectives: on the one hand,
architectural design should facilitate system evolution; on the other hand, the evolution pro-
cess must be aware of the system’s architecture and support its conceptual role. Our overall
goal is to help contribute towards improved understanding and practice of architectural evo-
lution. Towards that goal, the paper has two aims: first to provide an approach to assess the
architectural evolution of a project, and second to provide a pedagogical exemplar of good
architectural evolution.

The assessment approach to be detailed in the following sections is based on a set of
questions together with tool-supported quantitative measurements and visualizations, which
allow developers, project managers or researchers to see architectural evolution trends and
thereby answer the assessment questions. The questions are largely drawn from design
guidelines and principles proposed in the literature to facilitate evolution and maintenance.
Although assessment has ultimately to be qualitative, as the specific context of the project
has to be taken into account, our approach allows for the assessment to be based on rather
objective and quantifiable adherence to independently proposed advice for best practice.

To validate whether our approach is fit for its intended purpose, we apply it to a case
study. We did a so called information-oriented selection, in which “cases are selected on the
basis of expectations about their information content” in order to “maximize the utility of
information from small samples and singles cases” (Flyvbjerg 2006). In particular, we chose
the case study to be both paradigmatic, i.e. representative of a certain class of systems, and
critical, i.e. likely to allow certain general inferences to be made (Flyvbjerg 2006). We chose
what Flyvbjerg calls a ‘most likely’ critical case, which for our purposes means a case study
that is likely to follow the evolutionary design guidelines and principles we included in the
assessment. As Flyvbjerg points out, ‘most likely’ cases are well suited for the falsification
of hypotheses and propositions, in the sense of Popper (1959). If it turns out that the case
study follows some assessment guidelines and principles but not others, one can argue the
latter may not be as determinant for achieving good architectural evolution as the former, at
least for the class of systems the case study represents.

Besides helping refute hypotheses, case studies are also useful as rich narratives of con-
crete and context-dependent knowledge, which Flyvbjerg (2006) argues is more valuable
than the vain search for non-existent predictive theories and universals. Eysenck (1976)
wrote that “sometimes we simply have to keep our eyes open and look carefully at individual
cases—-not in the hope of proving anything, but rather in the hope of learning something”,
and Kuhn (1987) argues that a discipline without systematic production of exemplars is an
ineffective one. Melton (2006) points out that it is largely unknown how object-oriented
systems are structured in practice and he advocates for empirical studies that analyse how
object-oriented design principles are followed (or not) in practice. In later work, Melton and

4

Tempero (2007) took a single principle and checked it across many different systems. An-
other possibility is to analyse various, possibly related, principles on the same system, as we
do in order to assess its architectural evolution.

The application of our assessment approach to a paradigmatic and ‘most likely’ critical
case hence addresses both aims of this paper: it helps validate the approach and it provides
an in-depth account of an exemplar from which lessons can be learned, as done in other
disciplines, e.g. business management, which is heavily based on case studies of individual
organizations and products.

[..1][..2][..3]
[..4]
[..5]
[..6]In this section we motivated and outlined the research scope and approach of this

paper. [..7]The next section presents the principles and guidelines chosen for assessment and
reformulates our aims as research questions, Section 3 describes which data was collected
and how, Section 4 reports the results observed, Section 5 analyses the results, discusses
threats to validity and reflects on lessons learned, Section 6 compares this to other work,
and Section 7 provides concluding remarks.

2 Questions

[..8]
[..9]

1removed: Melton argues this would shed light on how effective such principles are to bring about certain
system qualities, and it would align academic research better with practical needs.

2removed: Melton proposes to concentrate studies on the principles that are not widely used, as insight
about those that practitioners have already adopted would not be as useful. Given that the premise is that we
lack knowledge about which principles are used in practice, we don’t quite understand how one can a priori
determine the less used principles. Interestingly enough,

3removed: Such arguments are not new, and there have been some empirical studies addressing those
issues, e.g. by checking whether low coupling and high cohesion indeed produce applications with fewer
errors (Basili et al 1996; Briand et al 2000).

4removed: As researchers and educators, we agree it should be our duty to scientifically investigate the
validity and relevance of various design principles and heuristics, so that more specific guidance can be given
about which ones are useful in which contexts to achieve which qualities. There is potential value of being
able to prioritize the usage of effective design heuristics, and of adopting systematic best practice to reduce
the dependence on highly talented individual programmers. We therefore wish to contribute to the above
research agenda.

5removed: There are various ways to do so.
6removed: We therefore take a historical perspective in our analyses. Instead of checking the architectural

design of a single release, we look at architectural changes over a period of time and at trends in the deviation
of or conformity to such principles. Such an approach has two implications. On the one hand, it requires
a mature case study with a non-negligible history. On the other hand, it allows one to also examine the
architectural change process and conformity to evolution laws, besides just structural design principles.

7removed: To sum up, we wish to investigate the validity, usefulness and generality of design principles,
and to do so through empirical analysis of their usage in case studies with certain characteristics, for which
such principles are relevant at the architectural level. We take a historical view of the system to be analysed,
because it complements the structural perspective with a process one.

8removed: We wish to investigate generic principles that should be applicable to a wide range of case
studies, not specific architectural design styles or patterns that may, for example, occur mostly in particular
domains.

9removed: We start by presenting the questions that will form the basis for architectural evolution assess-
ment. Several of the questions are principles that are related to stability, reuse, or some other evolutionary

5

There are three separate but related issues involved in our work. First, there is the ac-
tual task of assessing architectural evolution. This will be guided by so called assessment
questions, presented in the next subsection. Second, we must question whether the design
principles, guidelines and measurements used in the assessment are fit for purpose. This will
be formulated as a research question (Section 2.2) or discussed as threats to validity (Sec-
tion 5.3), and covers the first aim of proposing a suitable approach for assessing architectural
evolution. Third, the application of the assessment approach to a carefully chosen case study
should yield valuable lessons for architectural evolution. This addresses the paper’s second
aim and is also formulated as a research question.

2.1 Assessment questions

In the following we present a baker’s dozen of questions to guide the architectural evolution
assessment. The questions were selected to satisfy the following requirements, but we do
not claim the list of questions to be comprehensive.

– The questions should be related to evolution, e.g. by looking at historical trends. Ques-
tions that can be asked of a single snapshot of the system should be about an architectural
issue that affects evolution.

– The questions can be asked about any system, independently of domain, technology,
architectural languages, styles and patterns.

– The questions allow their answers to draw on automated quantitative measurements of
the system’s architecture-related data in the development repository.

– The questions should be diverse (e.g. not just about Lehman’s evolution laws) in order to
get a multi-faceted picture of a system’s architectural evolution. In particular, questions
should cover the two perspectives mentioned in the previous section: how architectural
design can facilitate evolution (e.g. questions 9–13 below) and how the evolution process
can support the architectural design (e.g. questions 2 and 6).

– The questions should preferably be based on guidelines and principles already proposed
in the literature, to avoid our own bias.

Note that only the last requirement is optional, all others are mandatory for each question.
The rationale for the second and third requirements is to allow for tool-supported contin-
uous assessment across a range of projects, e.g. via an architectural evolution ‘dashboard’
embedded within the development environment. The general quantitative approach of this
work is then complemented by questions that are system-specific, qualitative or require non-
architectural data, like ‘what is the impact of using off-the-shelf component X on the archi-
tectural evolution of system Y?’, ‘is quality X of system Y kept by architectural changes?’
or ‘what is the impact of architectural change on maintenance cost?’.

We start the list of assessment questions with one about the architectural style and its
changes:

1. Does the architecture follow any style, like pipes and filters? If so, does the style keep
the same or does it change over time?

As important is what does not change:

2. Is there any stable (i.e. unchanged) architectural core around which the system grew?

issue, while other assessment questions look at historical trends. We then step back to ask some research
questions about the application of the assessment.

6

To look at particular trends in the changes, we start with some evolution principles as
formulated in Lehman et al (1997), and already studied for other systems (Fernández-Ramil
et al 2008).

3. Does the architecture’s size follow Lehman’s 6th law of software evolution (continuous
growth)? Does growth follow any of the patterns observed for other systems?

4. Does the architecture follow Lehman’s 2nd law (increased complexity)?
5. Is there any evidence of restructuring work aimed at reducing growth and complexity?

Besides looking at trends of how the architecture changes, it may also be illuminating to
see when it changes.

6. Is there any systematic architectural change process?

Two of the key principles of structured software design is low coupling and high cohe-
sion, whose purpose is to achieve design stability (Stevens et al 1979). Following a historical
perspective, we look at their trends:

7. Does the architecture’s cohesion increase?
8. Does the architecture’s coupling decrease?

In 1996/7, Robert Martin wrote a series of articles on object-oriented design principles.
Some of them aim at providing guidance on how to structure components and their depen-
dencies, in a way that facilitates changes to the system. It therefore makes sense to include
them in our evolutionary analysis of structure.

The Acyclic Dependency Principle (ADP) states that the dependencies should form a
directed acyclic graph (Martin 1996). The rationale is to facilitate release management and
allocation of work to developers. Mutual dependencies, and the increased change propa-
gation they cause, makes it harder to independently release the various components and to
coordinate multiple developers.

9. Does the architecture follow the ADP?

The basic principle which is then refined by several of Martin’s proposals is the Open
Close Principle (OCP) coined by Meyer (1988). It states that entities should be open for
extension but closed for modification, i.e. the ideal way of changing software should be
by adding code instead of by modifying already working code. By attempting to answer
the previous questions, we can see whether the architecture is changing mostly through
extensions rather than through modifications inside the components.

10. Does the architecture follow the OCP?

The OCP is an ideal that is hard to achieve in practice, as modifications are often un-
avoidable. To facilitate change, Martin (1997) introduces the notion of stability, meaning
resistance to change, and the Stable Dependencies Principle (SDP), stating that dependen-
cies should be in the direction of stability, i.e. if A depends on B, then A should be less stable
than B. The reason is that changes to B may trigger changes to A, and therefore A shouldn’t
be more resistant to change than B, as that will make change propagation harder.

Martin measures the instability, i.e. the complement of stability, of each element in the
dependency graph as the element’s fanout (the number of outgoing dependencies) divided by
the total number of dependencies, i.e. the sum of the element’s fanout and fanin (the number
of incoming dependencies). The measure ranges from zero (when the fanout is zero) to one
(when the fanin is zero). If the fanin is zero, the element is said to be irresponsible, as it
provides nothing to other elements. It is easy to change irresponsible elements, because they

7

don’t trigger any further changes. Hence, irresponsible elements have the highest instability.
If the fanout is zero, the element is said to be independent, as it requires nothing from
other elements. Hence, there are no internal drivers to change the element. As Martin says,
an element that is independent and responsible “has no reason to change and reasons not
to change” and hence has the lowest instability value. However, he does not comment on
elements that are irresponsible and independent, and therefore have undefined instability.

11. Does the architecture follow the SDP?

Martin (1996) takes the OCP’s idea of extension further, proposing the Reuse/Release
Equivalence Principle (REP), which states that the unit of reuse should be the unit of release,
i.e. effective reuse consists not of copying fragments of code but instead of using code
as a pre-packaged product that is independently released. One can argue that component-
based development is one manifestation of the REP. In the same article, Martin states two
principles that can be seen as a corollary of the REP. One is the Common Reuse Principle
(CRP), reinforcing that all elements (e.g. classes) inside the same reuse unit have to be
reused together. Hence, all elements that collaborate together should be put inside the same
reuse unit. The other is the Common Closure Principle (CCP), stating that a reuse unit closes
(in the OCP sense) all elements inside it to the same kinds of changes. The rationale is that
changes that cross-cut reuse units force new versions of all those units to be released (REP).
By looking for independent release units within the architecture and by doing an historical
analysis of changes, we should be able to address two more questions:

12. Does the architecture follow the CRP?
13. Does the architecture follow the CCP?

2.2 Research questions

[..10][..11]
The previous assessment questions, together with the tool-supported measurement and

visualization techniques that we propose in Sections 3 and 4 to answer them, form the ap-
proach we wish to propose to fulfil the paper’s first aim. However, in proposing such an
approach, we must be confident it is fit for purpose. Such confidence might be undermined
in various ways.

First, the gathered data and the proposed metrics may not capture the design guidelines
and principles mentioned in the assessment questions. That is an issue of construct and
internal validity and will be dealt in Section 5.3.

Second, even though the metrics may be appropriate for the principles, the latter may not
be meaningful at the architectural level because most of the design concepts and principles
were developed for structuring lower level abstractions, like classes and methods, and their
relationships. This issue will be addressed by comparing our work with another evolutionary

10removed: The next two sections will explain the quantitative approach to answer the above questions. It
is based on a structural model that represents the architectural entities and their relations over time, and several
kinds of measurements done over the model. Once the approach has been applied to a particular system, we
can reflect whether the proposed model and metrics enabled one to obtain clear answers to the assessment
questions, i.e. whether the model and metrics are able to capture the design guidelines and principles listed.
The first research question is hence:

11removed: Can the proposed historical structural representation and measurement framework provide
clear answers to the assessment questions?

8

analysis of the same case study, but done at a lower design and implementation level (Mens
et al 2008).

Third, even if the principles can be stated at the higher architectural level, they may not
be very relevant for architectural evolution practice, i.e. they may not capture the developer’s
intents and concerns when designing for evolution and when evolving an architecture. In
other words, sustainable and effective architectural evolution might be achieved without
following any (or most) of the principles and guidelines used in our assessment questions.
This issue will be addressed by validating our analysis of the case study with its developers.

Our first research question is thus:

RQ1 Are the assessment questions and the tool-supported measurements and visualizations
fit for the purpose of assessing the architectural evolution of a system? In particular, are
the principles and guidelines covered by the questions

– meaningful at the architectural level?
– relevant for architectural evolution practice?

A positive answer to these questions will mean the paper’s first aim has been achieved.
[..12]
We have chosen the Eclipse Software Development Kit (SDK) as the case study to help

answer the previous research question. The SDK is the core of the Eclipse framework and
has been evolving for several years. Hundreds of tools and add-ons have been built, by a
large community of developers, on top of the SDK. The SDK is thus a critical case of well
carried out architectural evolution because otherwise the applications built on top of it would
have problems or require changes with every new release of the SDK, which in turn would
alienate developers. While other aspects, like the SDK’s features and documentation, may
also play an important role in Eclipse’s continuously growing and thriving eco-system of
applications and developers, the architectural qualities and the evolutionary process of the
SDK are undoubtedly major factors, because the SDK is the foundation on which the whole
range of Eclipse projects and third-party applications stands or falls.

The Eclipse SDK is also a paradigmatic case study, representing open source projects
that are led by organizations with full-time developers on the project, like MySQL and
JBoss, and representing extensible systems based on plug-in architectures, like the Mozilla
projects. These two characteristics may bear on architectural concerns and the evolutionary
process in such projects. Any lessons learned from the architectural evolution of the Eclipse
SDK may therefore have wider applicability.

Once the first research question has been answered, we can discard those assessment
questions that were found to be not fit for purpose, and distil from the remaining ones the
practices that have led to the sustainably effective architectural evolution of the case study,
thus answering our second research question:

RQ2 What can we learn from the architectural evolution of the Eclipse SDK?

If several and diverse insights can be obtained, the paper’s second aim of presenting the
SDK as an exemplar will be achieved.

[..13][..14]

12removed: Once the caveats of the assessment questions and of the means to answer the questions have
been established, one can judge whether the assessment of a particular system is interesting enough to be
reported as exemplar of best practice to follow or of mistakes to avoid.

13removed: However, can design principles that have been mainly developed in the context of packages,
classes and methods be lifted to a coarser level of granularity and become architectural principles?

14removed: Is it meaningful to try to validate the above principles and guidelines at the architectural level?

9

3 Data collection

Having defined the assessment and research questions we want to answer, we now detail the
case study, define the historic structural measurement approach, and summarise how it was
implemented.

3.1 The Case Study

[..15][..16][..17] The case study consists of multiple builds, i.e. snapshots, of the Eclipse
Software Development Kit (SDK) source code. Each build (except for release 1.0) provides
one or more high-level features, which are used by Eclipse’s update manager to allow users
to selectively and incrementally upgrade their installation of Eclipse. Each feature may be
composed of other, more specialised, features, i.e. features are organised hierarchically. For
example, feature org.eclipse.sdk has sub-feature org.eclipse.platform which in turn in-
cludes feature org.eclipse.rcp (Rich Client Platform).

Each feature is implemented by a set of plugins, Eclipse’s components. For example, in
build 3.3.1.1, the feature org.eclipse.platform is implemented by more than 70 plugins, in-
cluding org.eclipse.core.boot, org.eclipse.compare, and org.eclipse.platform, to name
a few. Notice that features and plugins may have the same name. In the remaining of the
paper, we omit the org.eclipse prefix from feature and plugin names. Each plugin may de-
pend for its compilation on Java classes that belong to other plugins. [..18]In the remaining
of the paper, we say that plugin X statically depends on plugin Y if the compilation of X
requires Y . Each plugin provides zero or more extension points. These can be required at
run-time by other plugins in order to extend the functionality of Eclipse. We will say that
X dynamically depends on Y if X requires an extension point provided by Y . Note that the
dynamic dependencies are at the architectural level; they do not capture run-time calls be-
tween objects. A typical example are the extension points provided by the ui plugin: they
allow other plugins to add at runtime new GUI elements (menu bars, buttons, etc.). It is also
possible for a plugin to use the extension points provided by itself. Again, the ui plugin is
an example thereof: it uses its own extension points to add the default menus and buttons to
Eclipse’s GUI.

For our purposes, the architectural evolution of Eclipse corresponds to the creation and
deletion of plugins and their dependencies over several builds. There are various types of
builds in the Eclipse project, the main ones being the major and minor releases (e.g. 2.0 or
2.1) and the service releases that follow them (e.g. 2.0.1). In parallel to the maintenance of
the current release, the preparation of the next one starts, going through some milestones
followed by some release candidates. For example, release 3.1 was followed by milestone
1 of release 3.2 (named 3.2M1), further five other milestones, and seven release candidates
(3.2RC1, 3.2RC2, etc.), culminating in minor release 3.2.

Figure 1 shows that builds can be organised in chronological or logical order. Logi-
cal order is indicated by solid arrows: a release may have multiple logical successors. The

15removed: Our analysis will be based on the metamodel in
16removed: , which shows the concepts relevant to the architectural evolution of Eclipse, and their rela-

tionships.
17removed: A metamodel for Eclipse’s architectural evolution
18removed: For example, the implementation of plugin platform in 3.3.1.1 depends on eight other plugins,

including core.runtime and ui.

10

3.1 3.2

3.1.1

3.2M1

3.1.2

3.3

3.2.1

3.3M13.2M2 3.2M3 3.2M4 3.2M5 3.2RC7

3.2.2

3.3M2 3.3RC4

Fig. 1 Chronological and logical sequences of some of the analysed builds

chronological order is represented by positioning the nodes from left to right: each release
has a single chronological successor. The dotted arrows indicate omitted builds[..19].

For the purposes of analysing architectural changes, it makes more sense to follow a
logical rather than the chronological order. [..20][..21]For this paper we analysed two logical
build sequences: the 26 major, minor and service releases from 1.0 to 3.5.1 over a period of
almost 8 years (from November 2001 to September 2009), and the 27 milestones and release
candidates between 3.1, 3.2, and 3.3 over a period of 2 years (from June 2005 to June 2007).
[..22]

3.2 The Data Model

[..23]
In order to perform the architectural evolution assessment in a systematic and generic

way, whilst avoiding certain threats to validity, we adopt the structural model and axiomatic
measurement framework of Briand et al (1996), with the corrections presented by Briand
et al (1997). We first briefly summarize the framework—formal definitions can be found in
the cited papers—and then we describe how we apply it for our purposes. We justify the
adoption of the framework when discussing the threats to validity of our work (Section 5.3).

3.2.1 The measurement framework

A system is a set of elements and their relationships, represented as a directed graph, i.e.
elements are nodes and relations are directed arcs. For example, nodes can represent indi-
vidual statements, methods, or classes, and arcs can represent control flow or inheritance. A
module is a subset of the elements, and all the existing relationships among that subset. For
example, if elements are methods, then modules might represent classes[..24]; if classes are
elements, then packages are modules. Two modules are said to be disjoint if there is no ele-
ment (and hence no relation) belonging to both, and unrelated if there is no relation between
an element of one module and an element of the other. In a modular system each element
belongs to exactly one module, i.e. modules partition the set of elements. Relations are clas-
sified as intra-module (i.e. between two elements of the same module) or inter-module (i.e.
between two elements of two different modules). Different kinds of measures can be taken
on systems and modules, as long as they obey the following axioms.

19removed: , in which the chronological and logical orders coincide
20removed: For example, instead of analysing the sequence 3.1, 3.2M1, 3.2M2, 3.1.1, 3.2M3, 3.2M4, 3.1.2

(see
21removed:), we either follow the main sequence 3.1, 3.1.1, 3.1.2 or the milestone sequence 3.1, 3.2M1,

3.2M2, . . . , 3.2.
22removed: Fortunately we kept a local copy of those builds, which we downloaded months ago, because

the Eclipse project no longer keeps older milestones and release candidates in their archive, in order to save
storage and bandwidth.

23removed: To
24removed: , or

11

The size of a module or system is a non-negative value. It is zero if there are no elements
(null value axiom). The size of a modular system is the sum of the sizes of its modules
(additivity axiom). A consequence of these properties is that adding elements to a system
doesn’t decrease its size (monotonicity axiom).

The complexity of a module or system is a non-negative value. It is zero if there are no
relationships (null value). The complexity doesn’t depend on the direction of the relations,
e.g. if we replace the relation ‘calls’ by relation ‘is-called-by’ (symmetry). The complexity
of a system is at least the sum of the complexities of any two of its modules that have no
common relationships. If a system is the union of two disjoint and unrelated modules, then
the system complexity is the sum of the module complexities (additivity). A consequence of
these properties is that adding relations to a system doesn’t decrease its complexity (mono-
tonicity).

Cohesion aims to capture the tightness in which related elements are encapsulated to-
gether in a module. The cohesion of a module or modular system can only range from zero
to a fixed maximal value, regardless of how much the module or system grows, i.e. cohesion
is non-negative and normalized. Cohesion is zero if there are no intra-module relations (null
value), because there is no evidence the elements should be encapsulated together in the
same module. Adding intra-module relations is further evidence the elements in that mod-
ule belong together and hence does not decrease the cohesion (monotonicity). The cohesion
of a module that is the union of two unrelated modules is not greater than the maximum
cohesion of the two original modules (non-additivity). Therefore, if two unrelated modules
are merged in a modular system, the system’s cohesion doesn’t increase (monotonicity),
because unrelated elements are being grouped into the same module.

The coupling of a module or modular system is a non-negative value. It is zero if there
are no inter-module relations (null value). Adding inter-module relations does not decrease
coupling (monotonicity). The coupling of a module obtained by merging two modules is
not greater than the sum of the original modules’ coupling; it is exactly the sum if the two
modules are unrelated (additivity). The coupling of a modular system does not increase if
two of its modules are merged; it stays the same if the two modules are unrelated.

3.2.2 Applying the framework

For our purposes, the system is the Eclipse SDK, the elements being plugins and the re-
lations being static and/or dynamic dependencies. To define the model of a single Eclipse
build, we start with the set of plugins, and, for each plugin, the sets of provided and required
extension points and the set of plugins on which it statically depends. This allows us to es-
tablish the dynamic and static dependencies between plugins, and to compute the missing
(i.e. needed but undefined) and unused (i.e. defined but not needed) entities, in order to pro-
vide an indication of how self-contained and open the system is. For example, an extension
point is missing if it is required but not provided, and unused if it is provided but not required
within the SDK. We haven’t found any missing plugins or extension points, and report on
unused [..25]extension points when addressing the OCP.

We modularise the SDK in three different ways. In the first modularisation the system
consists of two modules: the internal plugins IP, all those named org.eclipse.*, and the
external plugins EP, like org.apache.ant. We ignore plugins whose name ends in source
because they don’t provide added functionality; their inclusion would therefore invalidate
the analysis of Lehman’s 6th law (see start of Section 1). Each of those plugins wraps the

25removed: plugins

12

source code of some other plugin, so that the code can be accessed for help and debugging
purposes in the Eclipse IDE, by providing extensions to the pde.core plugin.

Since the name of a plugin determines whether it is an internal or external plugin, this
in turn allows us to compute the sets ISD, ESD, IDD, EDD of internal and external static
dependencies, and internal and external dynamic dependencies, respectively. Internal depen-
dencies are those among the internal plugins, while external dependencies are those between
an internal and an external plugin. We focus on the internal plugins module and its intra-
and inter-module dependencies, while ignoring intra-module dependencies of the external
plugins module, because those plugins are just wrappers of third party code. We compute
the sets of internal and external dependencies as ID = ISD∪ IDD and ED = ESD∪EDD,
respectively.

We define two other modularisations to check the CRP and CCP: features and subsys-
tems (to use a term of Mens et al (2008)), i.e. we group plugins from the user and developer
perspective, respectively, to then assess which modularization is more effective to encap-
sulate reuse and changes (Sections 4.9 and 4.10). We just consider top-level features and
subsystems because the structural model and its axioms only allow one level of system de-
composition. To be more precise, in the feature modularisation, the module corresponding
to top feature F groups all plugins that implement F or one of its sub-features, while in
the subsystem modularisation, the module corresponding to subsystem S groups all plugins
named org.eclipse.S.*. For example, plugins org.eclipse.ui and org.eclipse.help.ui both
implement top-level feature org.eclipse.ui. Hence both plugins will be part of module ui
in the feature modularisation, but in the subsystem modularisation, one will be in module
ui and the other in module help. [..26]Finally, each dependency between a pair of plugins
is classified as intra- or inter-module dependency, based on the module(s) to which the two
plugins belong.

The three types of modularisation methods—internal vs. external plugins, top-level fea-
tures, and top-level subsystems—partition the set of plugins and hence we have a modular
system as required by the measurement axioms. We now define the metrics directly on those
entities referred to by the axioms. This not only ensures we adhere to the axioms, it also
makes our metrics as simple and as general as possible.

The size axioms are based on elements; we thus define the size metric as the number
of elements, i.e. the number of plugins, in our case. For example, the size of the internal
plugins module is |IP|.

The complexity axioms are based on relations, hence we define the complexity metric
as the number of relations, i.e. the number of dependencies. For example, the complexity of
the internal plugins module can be |ID|, |ISD| or |IDD|, depending on which dependencies
(overall, just static, or just dynamic) one wishes to consider.

The coupling axioms are based on inter-module relations, hence we define the coupling
metric as the number of inter-module relations. For example, the coupling of the internal
plugins module is |ED|, |ESD| or |EDD|, depending on which dependencies to the external
plugins module one wishes to consider.

The cohesion axioms are based on intra-module relations, as evidence for elements to be
encapsulated together in the same module. We hence define cohesion as the ratio between
the actual and the potential (i.e. maximally possible) intra-module relations. The rationale
is that the existence of all possible e2 directed intra-module relations among the module’s

26removed: As for the other modules, we need to know to which feature each plugin belongs and then
group all features named org.eclipse.F.* into the top-feature F. Likewise, all plugins named org.eclipse.S.*
belong to top-level subsystem S.

13

e elements is the strongest evidence for those elements to belong together in that module,
which thus would have maximal cohesion. In other words, cohesion(M) = d/p2 for a mod-
ule M with p plugins and d dependencies among them (i.e. intra-module dependencies).
The number d ranges from zero, for a discrete graph, to p2, for a complete graph, and there-
fore cohesion is always in the interval [0,1], satisfying the non-negativity and normalization
axioms. For our case study, the maximal value is theoretically possible if each plugin dynam-
ically depends on every other plugin and itself. The null value and monotonicity axioms are
trivially satisfied by definition: if there are no dependencies, d is zero, and so is the cohesion,
and if dependencies are added (to a fixed set of plugins), d increases and so does the cohe-
sion. [..27][..28][..29]To check the non-additivity axiom, we assume we have two unrelated
modules M1 and M2 such that, without loss of generality, cohesion(M1) ≤ cohesion(M2),
i.e. d1/p2

1 ≤ d2/p2
2, which can be rewritten as d1 p2

2 ≤ d2 p2
1 (A). The cohesion of the merged

module will be (d1 + d2)/(p1 + p2)
2 because the axiom’s pre-condition (absence of inter-

module dependencies between the two modules to be merged) means there are no further
intra-module dependencies in the resulting merged module. The non-additivity axiom then
states that (d1 +d2)/(p1 + p2)

2 ≤ d2/p2
2, which can be rewritten as d1 p2

2 ≤ d2 p2
1 +2d2 p1 p2

(B) through simple algebraic manipulations. Inequality B follows directly from inequality
A and the non-negativity of the number of plugins and dependencies. Our cohesion metric
thus adheres to all cohesion axioms. [..30]

Finally, to address evolution, we repeat the model construction and metric computations
for each build. We allow the user to define a sequence b1,b2, . . ., in any order they wish,
of a subset of all builds. As said in the previous section, we looked at two sequences, one
with b1=1.0, b2=2.0, . . . , b26=3.5.1, and the other with b1=3.1, b2=3.2M1, . . . , b30=3.3.
Given a sequence, we can compute the architectural differences and similarities between
successive builds in the sequence. For example, if Pn is the set of plugins in a given module or
system at build bn, then we can compute the sets of plugins that bn added (Pn \Pn−1), deleted
(Pn−1 \ Pn), and preserved (Pn ∩ Pn−1). Because we are also interested in the unchanged
architectural core, we divide the preserved plugins into those kept from the first build in the
sequence (Pn∩Pn−1∩P1), and those from the previous build (Pn∩Pn−1 \P1). We do likewise
for extension points and static and dynamic dependencies. [..31][..32]

[..33][..34]

27removed: Note that the cohesion of a module is the ratio of complexity to the square of size, because the
complexity of a module is the number of intra-module dependencies. Cohesion is normalized in the

28removed: 0,1
29removed: interval, the maximum being reached by a module in which every plugin depends on all others

and on itself (a dynamic dependency self-cycle).
30removed: Furthermore, we can use another cohesion ratio defined as (d1/p1 + d2/p2)/(p1 + p2).

The rationale for this ratio is that one would weigh the cohesion ratios d1/p2
1 and d2/p2

2 proportionly
to their modules’ size p1 and p2. This alternative ratio is greater than (d1 + d2)/(p1 + p2)

2 because
(d1/p1 + d2/p2)(p1 + p2) > (d1 + d2) as long as p1 and p2 are greater than zero; however, it still satisfies
Briand’s axiom because (d1/p1 +d2/p2)/(p1 + p2)≤ d2/p2

2 is equivalent to the assumption d1 p2
2 ≤ d2 p2

1.
31removed: To perform our analyses in a systematic way and to be able to reapply them to other case

studies, we define a very simple structural model and associated metrics
32removed: .
33removed: We represent a module (to use a relatively neutral term) by a directed graph, where nodes

represent elements and arcs represent a binary relation between elements. Each element is classified as being
either internal or external to the module. Likewise, internal relationships IR are those between internal ele-
ments IE, while external relationships ER are those between an internal and an external element EE. In this
way, the description of a module also includes the connections to its context.

34removed: Formally, a module is a graph G = (IE ∪EE, IR∪ER), such that IE ∩EE = /0, IR⊆ IE× IE,
and G′ = (IE ∪EE,ER) is a bipartite graph.

14

[..35][..36][..37][..38]

[..39][..40][..41]

[..42][..43][..44][..45]

[..46][..47][..48]

[..49]

[..50]

[..51]

[..52][..53][..54][..55][..56][..57][..58][..59][..60][..61][..62][..63]

35removed: We define the following metrics on modules.
36removed: The size of a module is the number of internal elements
37removed: : size(G) = |IE|
38removed: .
39removed: The complexity is the number of internal relationships
40removed: : complexity(G) = |IR|
41removed: . Since it is impossible for a single metric to fully capture complexity, our aim was to define it

as simply and as generally as possible.
42removed: The cohesion is the ratio between the complexity and the square of the size. The reason for

this definition is for cohesion to be normalised and to reach its maximal value for complete graphs. Given
that we should not expect a well designed architecture to evolve towards a complete graph, and after checking
that cohesion in Eclipse is actually very low and decreasing (

43removed:), we changed the metric to be a simple complexity to size ratio
44removed: : cohesion(G) = complexity(G)/size(G)
45removed: .
46removed: The coupling of a module is the number of (incoming and outgoing) external dependencies
47removed: : coupling(G) = |ER|
48removed: .
49removed: The graph-based model is generic enough for modules, elements and relationships to represent

almost anything. For example, modules and elements can represent Java packages and classes, respectively,
with arcs representing the inheritance relation. A module may also correspond to a class, with elements
representing methods and arcs representing the call relation.

50removed: For our purposes, we wish to apply the model to Eclipse and other plugin-based architectures.
Therefore, we take a module to be the whole architecture of a sub-system (the Eclipse SDK in this case study)
and an element to be a plugin, while relationships may denote the static or dynamic dependencies. Because
of the latter, we also need to include in the model the extension points provided and required by each plugin.

51removed: To check the CRP and CCP, we just group the elements and arcs into modules that represent
the reuse units. The features of the Eclipse SDK are an example of reuse units.

52removed: We use a relational representation instead of a graph-based one, for practical reasons. Opera-
tionally, the first step consists of defining the following relations from the repository’s data:

53removed: IP(p) or EP(p) holds if p is an internal or external plugin
54removed: Prov(p,e) or Req(p,e) holds if plugin p provides or requires extension point e
55removed: SD(p, p′) holds if plugin p statically depends on plugin p′
56removed: From these, the following relations can be computed:
57removed: internal static dependencies ISD(p, p′)≡ SD(p, p′)∧ IP(p)∧ IP(p′)
58removed: external static dependencies ESD(p, p′)≡ SD(p, p′)∧¬ISD(p, p′)
59removed: dynamic dependencies DD(p, p′)≡ ∃e : Prov(p′,e)∧Req(p,e)
60removed: internal dynamic dependencies IDD(p, p′)≡ DD(p, p′)∧ IP(p)∧ IP(p′)
61removed: external dynamic dependencies EDD(p, p′)≡ DD(p, p′)∧¬IDD(p, p′)
62removed: internal dependencies ID(p, p′)≡ ISD(p, p′)∨ IDD(p, p′)
63removed: external dependencies ED(p, p′)≡ ESD(p, p′)∨EDD(p, p′)

15

[..64][..65]
[..66][..67][..68][..69]
[..70][..71]
[..72][..73][..74][..75][..76][..77][..78]

3.3 The tool infrastructure

We developed a pipeline of small scripts that operate on text files, to first extract the data,
then compute the metrics, and finally [..79]visualize the results.

First, we downloaded, for each of the builds we analysed, the source code of the whole
SDK from [..80]http://archive.eclipse.org or its mirrors. We wrote some shell, AWK and
XSLT scripts that extract the basic architectural information mentioned in the previous sec-
tion: for each feature there is a metadata file feature.xml that lists the feature’s sub-
features and the plugins that implement it, and for each plugin there are two metadata files

64removed: Given the above relations, computing the metrics is just a matter of computing the cardinality
(i.e. the number of tuples) in the appropriate relation. For example the size is |IP| and the coupling is |ESD| or
|EDD| or |ED|, depending on which dependencies we take as the arcs. Note that in general |ED| ≤ |ESD|+
|EDD| and that EDD = /0 for the Eclipse SDK, because none of its external plugins provide extension points.
However, the EDD relation is needed in the general case, e.g. if the module is a reuse unit.

65removed: we would consider the ecosystem of Eclipse projects and their mutual dependencies.
66removed: The relational model further allows to compute missing (i.e. required but not provided) and

unused (i.e. provided but not required) plugins and extension points. For example, given all plugins P(p) ≡
IP(p)∨EP(p) and all dependencies D(p, p′)≡ SD(p, p′)∨DD(p, p′) we have

67removed: missing plugins MP(p)≡ ∃p′ : D(p′, p)∧¬P(p)
68removed: unused extension points UEP(e)≡ ∃p : Prov(p,e)∧¬∃p′ : Req(p′,e)
69removed: Missing artefacts indicate potential compile-time or run-time errors, or an ill-defined module

boundary, or some problem with the data mining process. Unused artefacts, especially extension points in
the case of plugin-based architectures, might help check the OCP, by telling us how open and extensible
the module is. Too many unused elements might be an indication of premature generality. A completely
self-contained and closed module would have no missing nor unused elements.

70removed: To allow a historical analysis, the model has to be enriched with the notion of a snapshot,
which is a module at some point in time. For our case study, a snapshot is one of the Eclipse builds mentioned
in

71removed: . All the above relations must have an additional argument stating the snapshot in which they
hold. For example, P(p,s) holds if plugin p exists at snapshot s and SD(p, p′,s) holds if p statically depends
on p′ in snapshot s. To allow flexibility in the choice of the snapshot sequences to analyse, we allow the
researcher to define the relation Next(s,s′), which states that snapshot s′ follows immediately snapshot s. The
relation is considered ill-defined if a snapshot succeeds itself, has more than one successor, or if more than
one snapshot has no predecessor. The unique snapshot without predecessor is considered the first release of
the sequence: First(s′)≡ ∃s′′ : Next(s′,s′′)∧¬∃s : Next(s,s′).

72removed: Once a sequence is defined, it is possible to compute how each module snapshot has been
obtained from the previous one. In particular, we compute:

73removed: added plugins AP(p,s′)≡ P(p,s′)∧Next(s,s′)∧¬P(p,s)
74removed: kept plugins KP(p,s′)≡ P(p,s′)∧First(s)∧P(p,s)
75removed: deleted plugins DP(p,s′)≡ Next(s,s′)∧P(p,s)∧¬P(p,s′)
76removed: previous plugins PP(p,s′)≡ P(p,s′)∧¬AP(p,s′)∧¬KP(p,s′)
77removed: and similarly for extension points and static and dynamic dependencies. This of course as-

sumes that elements and relations maintain a unique name throughout the module’s history, which means
that a renaming will be counted as a simultaneous deletion and addition. The aim of computing the kept (i.e.
unchanged) elements and relationships of a module is to answer Question 2 of

78removed: .
79removed: visualise
80removed: http://archive.eclipse.org

16

(plugin.xml and, since release 3.0, MANIFEST.MF) that list the plugin’s required and
provided extension points and the plugins it depends on. The output of this fact extraction
process is a set of features, plugins and extension points and their basic relations, e.g. the
hierarchical containment relation between features and the ‘provides’ relation between plu-
gins and extension points. Since a set can be represented as a unary relation that holds for
each element that is a set member, we represent all facts as relations in the popular text-based
Rigi Standard Format (RSF) (Wong 1998).

Next, we used the relational calculator Crocopat (Beyer et al 2005), which operates on
RSF files, to compute[..81]: derived relations, like the transitive closure over dependencies,
in order to detect cycles for the ADP, and the union of all plugins that implement a given
feature or one of its sub-features, in order to obtain the feature modules[..82]; the metrics for
each build[..83]; the differences and similarities between consecutive builds, given an
extra successor relation that defines the sequence of builds [..84]as described in the previous
section. The result of all these computations are further relations in RSF, e.g., one binary
relation per metric stating the value of the metric at each build.

Finally, the third phase of the pipeline uses Crocopat and AWK to generate the input
files for various visualization tools. We use graphviz85 to display architectural structures
(as in Figure 3), CCVisu (Beyer 2008) to show clusterings (as in Figure 15), and Google
Interactive Charts87 to plot the evolution of metrics with line and bar charts embedded in
web pages. The input files for the charts are comma separated value files, generated with
Crocopat for each build sequence analysed, that we uploaded to Google Spreadsheets.

[..92]
[..93][..94][..95]96[..97][..98][..99]
[..100]

81removed: derived relations (e.g.
82removed:),
83removed: and
84removed: , the differences and similarities between consecutive builds,
85[..86]http://www.graphviz.org/
87[..88][..89][..90][..91]http://code.google.com/apis/visualization/interactive charts.html
92removed: However, we took care to make the suite relatively independent of our particular needs, in

order to be useful in a variety of contexts. Therefore, instead of developing a standalone application or an
extension for a particular IDE, we have put together a simple pipeline architecture of scripts that manipulate
text files. This makes it easier to interface with other tools and to replace part of the pipeline, e.g. for a
different case study.

93removed: A partial
94removed: The
95removed: architecture of our tool suite
96[..97]
97removed: is shown in
98removed: as a set of processes that convert input data files on the left into the output data files on the

right. Among the processes, fact extractors obtain factual relations from artefacts of a single release of the
software system and store the relations in Rigi Standard Format (RSF) files. RSF is a simple and widely
used text format in which each line represents a tuple, with the relation name being followed by each tuple
element, separated by spaces (Wong 1998). We next used the relational calculator Crocopat (Beyer et al 2005)
to implement a fact merger that combines facts about selected individual snapshots into a single fact base by
adding the snapshot id to every relation tuple. Metric calculators compute from the fact base a number of
metrics, such as size and complexity. The reporters present the metrics and the architecture in a number of
ways, including various visualisations. In the remaining of this section we detail parts of the mining process.

99removed: Overview of our toolset
100removed: For each Eclipse plugin there is a plugin.xml file that lists the extension points provided

and used by that plugin, and the other plugins it depends on for compilation. Since release 3.0, the static

17

[..101]
[..102]
[..103][..104][..105][..106]
[..107][..108][..109][..110][..111]
[..112]113 [..114]115 [..116]

dependency is in another file, MANIFEST.MF, which is not in XML format. These metadata files are hence a
straightforward source of dependency information between plugins, saving us from having to delve into their
source code. We fully agree with Alex Wolf’s argument in his WICSA’09 keynote, that configuration files are
an underexplored source of architectural information, which has so far been mainly extracted, in a potentially
not very reliable way, from source code.

101removed: We first considered extracting the metadata files for each build directly from the CVS reposi-
tory, for example by checking out all files with tag R 3 1 (CVS tags cannot include periods) in order to obtain
the information about release 3.1. However, after a while we found out that there is no direct correspondence
between CVS tags and builds. In other words, comparing the set of metadata files obtained from the CVS
repository with the set of those included in the actual builds, we found that often the two sets didn’t coincide.
We also tried to check out the files according to the known date of the build, but again there was a mismatch.
We realized the Eclipse project uses for each build a complicated file that indicates which source files are
included.

102removed: The input to our analysis is therefore not a CVS repository, but a set of compilable source code
archives, one per build we wish to analyse. How each source code archive was obtained is not of concern to
our tool, making it independent of any configuration management system. In our case, for each of the builds
we analysed, we downloaded the source code of the whole SDK from http://archive.eclipse.org or its mirrors.

103removed: The repository is first processed by some shell, AWK and XSLT scripts that extract the in-
formation about the existing architectural elements from the plugin.xml files (and MANIFEST.MF files,
depending on the build). The result of this processing is a RSF file with the basic relations (IP, EP, Prov, Req
and SD) presented in

104removed: . We define as an internal plugin any component for which a plugin.xml file exists and its name
starts with org.eclipse but does not end in source. A source plugin wraps the source code of some other
plugin, so that the code can be accessed for help and debugging purposes in the Eclipse IDE, by providing
extensions to the

105removed: pde.core
106removed: plugin. Given that source plugins don’t add functionality, we decided to ignore them for this

study. Moreover, since in recent releases many plugins also have its source counterpart, this would greatly
inflate the metrics, in particular the size.

107removed: Once we have the basic relations for each snapshot, we use Crocopat first to merge all RSF
files into a single one (top left of

108removed:) as mentioned before, and second to compute any derived relations and metrics (
109removed: and centre of
110removed:), given the snapshot sequence. For example, from the Prov and Req relations between plugins

and extension points, a Crocopat script computes the dynamic dependency relation among plugins. Crocopat
is also used to compute transitive closures over dependencies, in order to detect cycles for the ADP. The
Crocopat script also computes added, deleted and kept plugins and dependencies, distinguishing between
unforced and forced additions and deletions. We will explain those concepts in

111removed: .
112removed: Finally, for the ‘front end’ of the chain, we use Crocopat and AWK to automatically translate

the relevant relations in the RSF files (e.g. SD) into files for input to graphviz
113[..114]
114removed: and CCVisu (Beyer 2008). This allows to display the architectural structure in various ways.

As for showing the evolution of metrics along build sequences, we simply use bar and line charts. Crocopat
generates comma separated value files (one for each sequence), which we upload to Google Spreadsheets.
We wrote Javascript code that calls the Google Visualization API

115[..116]
116removed: in order to get the data from the spreadsheets, generate charts and embed them into a web

page.

18

The rationale for our approach was to build on top of existing tools and data formats to
avoid reinventing the wheel while providing a flexible, light-weight and interoperable tool
infrastructure.

For example, using Google tools has several advantages. First, the data is made public in
various formats (HTML, OpenOffice, Excel) without additional effort from us. Second, the
charts are large and interactive, allowing the reader to click on the data points and see the
exact values, instead of just perceiving generic trends from small, static, and grey charts on
paper. Third, the Google Visualization API includes an expressive data query language that
allows some calculations to be performed on the fly, like computing the ratio of the values
in two columns. This means that some additional metrics can be presented without having
to change the Crocopat script, run it, and upload the new spreadsheet.

The tool’s flexibility and interoperability is achieved by an open and easy to modify pipe-
and-filter architecture in which the pipes are text files in standard formats (XML, RSF) and
the filters are scripts executed by widely used, freely available, and generic data processing
and visualization tools (AWK, XSLT, Crocopat, graphviz, etc.). Due to this, it should not
be too difficult to integrate our scripts within existing tool chains, like FETCH (Bois et al
2008), and to modify the ‘back-end’ fact extraction phase to handle other systems besides
Eclipse.

Indeed, the fact processing and visualization phases only require minimal information
in RSF: the components and their provided and required services (plugins and extension
points, in the case of Eclipse)[..117]; the different kinds of relationships (static and dynamic
dependencies in our case)[..118]; and all this for each snapshot to be analysed. In particular, it
is irrelevant for those two phases whether the snapshot structural models were extracted from
the metadata of various source tarballs (as in our case), or from applying an architectural
reverse engineering tool on a single software configuration management repository, or even
from system specifications written in some architecture description language. The structural
model presented in the previous section is so general, due to its graph-based nature, that
more expressive ADLs can be mapped to it, thus allowing our approach to be applied even
in cases where code is not available, as long as architectural models are.

The Eclipse metadata is such an architectural model, leading to very efficient and accu-
rate fact extraction, without requiring code analysis to reverse engineer a possibly not very
reliable architecture. We fully agree with Alex Wolf’s argument, in his WICSA’09 keynote,
that configuration files are an [..119]under-explored source of architectural information.

A second source of efficiency is the small size of the database of extracted facts (less
than 90,000 tuples for the 53 builds analysed) because there are many fewer elements and
relationships at architectural level than at implementation level. Beyer et al (2005) applied
Crocopat to the Eclipse 2.1.2 graph of 7,081 classes and their 59,344 call dependencies,
whereas each build’s architectural graph of Eclipse plugins and their dependencies has only
hundreds of nodes and arcs (Section 4). Our tool chain thus remains efficient even though we
store the data in RSF text files, instead of using an SQL-based relational database manager.
Moreover, Beyer reports that Crocopat is much more efficient than MySQL for computing
cycles and transitive closures of relations, which are important features for our work and for
structural analysis of design in general.

117removed: ,
118removed: ,
119removed: underexplored

19

4 The results

After presenting the data model and how the data is mined and processed, we are in a po-
sition to show the results, following the order of the questions in Section 2. The charts
presented in this section (and additional ones) can be interacted with [..120]on the ‘web
companion’ to this paper [..121](see appendix A).

To show the evolution of the metrics over the two build sequences, we use mostly stacked
bar charts, with each bar segment showing a particular subset of the total number of items
(plugins, extension points or dependencies). The segments are stacked, from bottom to top,
as follows: unforced deletions, forced deletions, kept items (i.e. since the first build in the
sequence), previous items, forced additions, unforced additions. In general, a change is con-
sidered unforced if it is by choice, and forced if it is due to another change, e.g. the unforced
deletion of a plugin forces the deletion of all its extension points and dependencies.

We use the same colour for unforced additions and deletions, and the same colour for
forced deletions and additions. Since deletions are represented by negative numbers and
additions by positive ones, there is no possible confusion. We also use a darker colour to
distinguish kept from previous items. On the electronic version of this paper and on the
[..122]web companion you can see we use warmer colours (red and orange) for changed
and cooler colours (blue tones) for unchanged items. The aim of these choices was to have a
reduced colour palette that translated well to grey scale values in the printed version, while
using position and hue to quickly draw the reader’s attention to the unforced changes at the
extremities of each bar.

4.1 Architecture

We have visualised the architecture of each major and minor release with graphviz and
noticed that Eclipse largely follows a layered architectural style. For each release, we calcu-
lated the number of layers and how many plugins were in each layer. The root layer (layer
0) contains all plugins with fanin zero. A plugin p is in layer n if n− 1 is the maximum
layer of all the plugins that depend on p. Figure 2 uses alternatively dark blue and red for
each layer, from the root layer at the bottom, to the deepest layer at the top of the chart. The
width of each colour band is proportional to the number of plugins in that layer. Eclipse had
6 layers until release 3.0, 13 in release 3.0, 11 in 3.1, 15 in 3.3 and 16 in 3.4. Most of the
growth happens, as it should according to Martin’s principles, in the layer with the highest
instability values: the root layer, where all plugins are by definition irresponsible. Variations
in the size of other layers are relatively small.

120removed: at a companionHTML file that has been submitted as an attachment
121removed: . The file is fed by the Google spreadsheets with all measurements and displays interactive

visualizations in SVG format.
122removed: attached HTML file

20

Fig. 2 Evolution of the architecture’s layers

[..123][..124] [..125][..126][..127]

[..128]

Eclipse exhibits a non-negligible and stable architectural core of internal plugins and
dependencies that have been kept since release 1.0 and are shown in Figure 3, with dotted
lines denoting dynamic dependencies and solid lines representing static dependencies.

The core follows the same layered style as the overall architecture and accounts for 48%
of the overall dependencies and 69% of the plugins of the original architecture and 6% of
the overall dependencies and 9% of the plugins of the final architecture.

Notice that there are no static dependencies between documentation plugins because
they do not contain any source code, but they use the extension point mechanism to docu-
ment Eclipse in an incremental way. We can also see that some plugins, like pde (Plugin
Development Environment), were retained throughout Eclipse’s development, but none of
their original dependencies remain.

123removed: , but due to the number of plugins and dependencies, they are too detailed to be presented.
Instead we present the architecture of the last build we analysed (3.5.1)

124removed: the current figure in arevol is too big and the graph for 2.0 seems wrong: there should be
self-cycles for the intra-feature depdencies. The old figures I emailed seemed more ’plausible’. === The
self-cyclic numbers were not counted for cohesion. Now I recomputed them, including the diagrams.

125removed: at the feature level, using static dependencies. In
126removed: , the weight on each arc shows how many dependencies there are between the source feature

plugins and the target feature plugins. If the source and target of the arc are the same feature, the weight shows
how many dependencies exist between the plugins of that feature. This corresponds to the complexity of the
feature, while adding the weights on the incoming and outgoing arcs for each feature, we have its coupling
(excluding the plugins that are external to the SDK).

127removed: or are those also contained in features? ==== No, they were excluded as we only show the
org.eclipse.* and none source plugins.

128removed: Coupling and complexity of features in build 3.5.1

21

Fig. 3 The architectural core, with layers shown as columns

4.2 Lehman’s 6th Law

Figure 4 shows the evolution of Eclipse’s size, along the two build sequences. Note that the
number of kept plugins is [..129]relative to the first release in the sequence, i.e. 1.0 or 3.1.
We consider all additions and deletions of plugins as unforced, because they are architectural
choices.

We can observe that, over all releases, the size of the architecture increases more than
sevenfold, from 35 to 271 plugins. The evolution follows a segmented growth pattern, in

129removed: with regard

22

Fig. 4 Evolution of the size

which different segments have different growth rates. In particular, the rate is positive dur-
ing major and minor releases and mostly zero during service releases. Exceptions are service
releases 2.1.1 (one plugin added) and 3.5.1 (48 new plugins). A closer look at 3.5.1 reveals
that most of the added plugins are non-functional, providing support for the run-time in-
frastructure (the equinox plugins that implement OSGi) and for Eclipse’s development (the
release engineering tool and the Java Management Extensions plugins).

We further [..130]notice that no service release ever deleted a plugin, and that most
architectural changes occur in milestones, although some also occur in the later release
candidates.

Segmented growth patterns have been observed for other open source systems, as sur-
veyed by Fernández-Ramil et al (2008). Some studies observed superlinear growth, i.e.
growth with increasing rates, in the number of source code files, and the same happens
here at architectural level. Plotting the total number of plugins against the major and minor
releases and service release 3.5.1, we found that the quadratic function p = 1.9886r2 +
3.5553r+36.283, where p is the number of plugins and r the release order number from 1
to 10, provided a better fit, with R2 = .9917, than a linear or exponential regression model.

130removed: note

23

4.3 Lehman’s 2nd Law

Figure 5 plots the overall complexity, i.e. relation ID (Section 3.2), over the main build se-
quence. The web page indicated earlier provides additional charts for static and dynamic
internal dependencies and for milestones and release candidates. A forced addition or dele-
tion of a dependency is associated to the creation or removal of at least one of the involved
plugins, i.e. the addition (resp. deletion) of a dependency between two plugins is called
unforced if both plugins already existed (resp. still remain).

Fig. 5 Evolution of the overall complexity

Again, dependencies change mostly during milestones. Compared to plugins, there are
more changes during service releases, but still very few (e.g., 3 static dependencies removed
in 3.3.1). All but one of the new dependencies in 3.5.1 are due to its new plugins.

Contrary to the continuous net increase of size, there has been a decrease of complexity
by 11% in release 3.1, i.e. there was some effort to counteract the system’s growth. More-
over, the chart shows that most additions are forced, i.e. new dependencies are due to new
plugins, while most deletions are unforced, i.e. due to changes in the plugins’ implementa-
tions in order to reduce dependencies.

It’s unclear whether the evolution of overall dependencies follows a linear or superlinear
trend: a straight line fits the data points with R2 = 0.9766, [..131][..132]a second-order
polynomial with R2 = 0.9768.

We point out that the constant height segments of kept elements in Figures 4 and 5
immediately indicate the existence of a stable architectural core.

4.4 Cohesion

The previous charts show that the number of plugins and dependencies grow ‘in sync’,
following the same pattern. There are however two exceptions: release 3.0 substantially

131removed: only marginally better than
132removed: whereas

24

Fig. 6 Evolution of the cohesion

increased the number of dependencies while only slightly increasing the number of plugins,
and release 3.1 reduced the dependencies while increasing the number of plugins. Moreover,
although there are many more dependencies than plugins, the latter increase faster.

As stated in Section 3, [..133]the cohesion of a module is the ratio between the actual
and the potential number of dependencies, which is the square of the number of plugins.
Thus, the above observations entail that the cohesion is constantly decreasing, only increas-
ing between 3.0 and 3.1, as one can see in Figure 6. [..134][..135][..136]

4.5 Coupling

The evolution of the coupling between the internal and external plugin modules also follows
a segmented growth pattern, but with a substantial decrease in release 3.0, which replaced all
external dependencies (Figure 7). Release 3.1 further reduced the dependency on external
plugins, although it grew again in later releases.

We looked into the actual dependencies and plugins involved, and realized that the in-
ternal plugins that depended on external plugins in 2.1.3, depend in 3.0 on new internal
plugins which in turn depend on the external plugins. In other words, release 3.0 introduced
internal ‘proxy’ plugins for the external plugins, and this reduced coupling between Eclipse
and third-party components. Additionally, one of the external plugins used by release 2.1.3,
org.apache.xerces, was removed. Figure 7 sums up all these modifications as unforced
changes (the rewiring) and forced changes (due to the removed plugin and new proxies).
Overall, the chart shows most changes to the coupling are unforced, i.e. by choice rather
than due to the addition or removal of plugins.

133removed: for a module, like the internal plugins module we are analysing, cohesion
134removed: Hence, computing the cohesion, we note it is remarkably almost constant (
135removed:) except for the increase at 3.0, which was kept until 3.1 because service releases didn’t change

the architecture. After 8 years, the cohesion levels of release 3.5.1 (1.40 internal dynamic dependencies and
2.17 static dependencies per plugin, on average) are very similar to those of the much smaller release 1.0.

136removed: also shows that there are many more static dependencies than dynamic ones, as can be checked
with the additional complexity charts on the companion HTML file mentioned earlier.

25

Fig. 7 Evolution of the coupling

4.6 Acyclic Dependency Principle

To check the ADP, we considered the union of static and dynamic dependencies, i.e. relation
ID (Section 3.2), to be able to detect as many cycles as possible. We consider ‘self-cycles’
to be harmless, as they indicate plugins using their own extension points. In the case of
longer cycles, we further check if they involve plugins from different features, because that
indicates potential refactoring opportunities.

As the [..137]chart in the web companion shows, our scripts report a growth of
self-cycles, from 8 in release 1.0 to 41 in 3.5.1, that follows the same segmented pattern
as plugins and dependencies, with alternating big and small increments. Moreover, between
releases 3.1 and 3.3 changes only occurred during milestones, which is coherent with our
previous observations. Interestingly, there was a small reduction of self-cycles in 3.5, but
more were added in 3.5.1. Except in 2.0, all self-cycle removals were unforced.

More interestingly, the only cycle we found with length over 1 involved just three plu-
gins: ui, ui.editors, and ui.workbench.texteditor, all in feature platform. It appeared in
release 2.1 and disappeared in release 3.0. None of the plugins were deleted, i.e. the cycle
removal was unforced, but one plugin was moved to a different feature.

4.7 Open/Closed Principle

The previous charts show that there are far more additions than deletions. Also, unforced de-
pendency changes, which require internal modification of existing plugins, do not outweigh
forced dependency changes, which occur with the introduction or removal of plugins. [..138

]
To get a richer assessment of the OCP, we also measured the absolute and relative num-

ber of extension points provided by the Eclipse SDK and how the numbers changed over
time. The addition (deletion) of an extension point is considered forced if the plugin that
provides the extension point has been created (resp. removed) simultaneously.

137removed: charts in the companion HTML file show
138removed: One can hence argue that Eclipse’s architecture does indeed evolve more by extension than

modification.

26

Fig. 8 Evolution of the absolute number of extension points

Fig. 9 Evolution of the plugin to extension point ratio

Although we see again the familiar growth pattern, we note that most extension points
are added to already existing plugins (unforced additions in Figure 8). Hence, new plugins
have few or no extension points, leading to a decrease in the average number of extension
points per plugin (Figure 9). [..139]We can also see in Figure 8 that all deletions are forced,
i.e. an extension point is never removed unless its host plugin is.

Also interesting is to see how many unused extension points there are, i.e. whether the
SDK is “eating its own food” or providing extension points mostly for other Eclipse projects
and 3rd-party plugins. The addition of an unused extension is considered to be forced if
it is due to the deletion of a dynamic dependency, and hence the extension point became
unused. The deletion of an unused extension point is forced if due to the deletion of the
corresponding plugin.

We note that most additions are unforced (Figure 10) and that overall the absolute and
relative number (Figure 11) of unused extension points grew, although it’s early to say if
the decreasing trend started in release 3.5 (due to the removal of plugins) will continue.
Until then, very few unused extension points had been deleted. The percentage of unused

139removed: Eclipse has hence become, in relative terms, less open to extension.

27

Fig. 10 Evolution of the absolute number of unused extension points

Fig. 11 Evolution of the percentage of unused extension points

extension points has doubled from 9.4% in release 2.0 (which deleted most of the extension
points of 1.0) to 19.3% in 3.5.1. [..140]

4.8 Stability Dependency Principle

We checked the SDP by computing the instability of each internal plugin separately for
static, dynamic and overall dependencies for all releases. We ignored self-cycles because
Martin (1997) says that instability has to decrease in the direction of the dependency. Hence,
a dependency between the same component (with a single instability value) necessarily vio-
lates the principle. The average plugin instability per release fall in the ranges [0.197, 0.286],
[0.290, 0.371] and [0.249, 0.351] for static, dynamic and overall dependencies, respectively.

140removed: This means that more and more of the new extension points are added because of external
needs, not of the SDK.

28

Fig. 12 Evolution of the number of dependencies violating the SDP

Recalling the definition of instability from Section 2, this means plugins tend to be indepen-
dent and responsible. [..141]

Figure 12 shows the very small number of dependencies that violate the SDP. Dynamic
dependencies introduce fewer violations than static ones. In addition, the former are de-
creasing while the latter are increasing. Although the absolute number grows, the relative
number of dependencies violating the SDP has been kept below 4% for most builds, as an
additional chart in the attached file shows. Note that between the same pair of plugins, either
all or none of the dependencies violate the SDP. Figure 12 shows that the overall and static
dependencies violating the SDP are very similar (or even equal from 3.1 to 3.3.2), i.e. the
dynamic dependencies contribute very few or even no extra violations.

4.9 Common Reuse Principle

If plugin A depends on plugin B, then A is reusing B’s functionality. We use CCVisu (Beyer
2008) to visualise clusters of plugins according to their dependencies: groups of plugins with
many dependencies among them will be put close together in the resulting layout, mutually
independent plugins will be positioned far apart. Clusters show plugins that collaborate to-
gether and hence should be reused together (Section 2).

Given that the CRP builds on the assumption of the Reuse/Release Equivalence Prin-
ciple, we wish to assess whether the clusters cross-cut a release unit. For that purpose, we
aggregate plugins into two different kinds of release units, one from a user’s perspective
(features) and another from a developer’s perspective (subsystems). If plugins in the same
reuse cluster belong to different features or subsystems, then the release unit is not a reuse
unit, a violation of the REP and CRP. In practical terms, it means that users have less choice
of freely picking and mixing features, because inter-feature dependencies require additional
features to be installed, and that software developers have to coordinate dependent plugins
across subsystem boundaries.

Figure 13 was generated by CCVisu from the overall internal dependencies in release
3.5.1. Each circle represents a plugin, the radius being proportional to the number of that plu-
gin’s incoming and outgoing dependencies. A dependency between two plugins will bring

141removed: We analysed the dependencies separately because we wanted to see whether compile-time or
run-time dependencies are “better” in terms of this principle.

29

Fig. 13 Assessing the CRP in release 3.5.1 for features (top) and subsystems (bottom)

them closer together in the layout. In the top part of the figure, plugins are coloured by fea-
ture, while in the lower part they are coloured by subsystem. Since features and subsystems
are hierarchical, we only consider top level features and subsystems (like org.eclipse.sdk),
which have the coarsest granularity and hence are more likely to encapsulate reused plug-
ins. As we can see, even in the few cases of clear, albeit small, clusters, they bring together

30

plugins from different features of subsystems. In the [..142]web companion we present the
complex dependency graph of 3.5.1 at feature level; it confirms that many plugin dependen-
cies cross-cut features, without any apparent cluster of more strongly connected features.

Instead of presenting one clustering graph per build, we used the x/y-coordinates com-
puted by CCVisu for displaying the clustering, to measure the average intra-feature (or intra-
subsystem) distance as the average distance between the centres of all pairs of circles with
the same colour, and the average inter-feature (or inter-subsystem) distance by taking cir-
cles of different colours. Since there is only one clustering graph per release, but with two
different colourings, all average distances are measured on the same graph and hence can
be compared. Figure 14 shows that the average intra-unit distance is always lower than the
inter-unit one, but the former is approaching the latter. The average distance within subsys-
tems is always smaller than within features, i.e. the subsystem decomposition of the SDK
groups dependencies better than the feature decomposition.

Fig. 14 Evolution of the average intra- and inter-unit distance in CCVisu’s graphs

4.10 Common Closure Principle

We assess the CCP in a similar way, colouring plugins according to the feature or subsystem
they belong to, but this time using CCVisu for its original purpose: to visualise co-change
(hence its name). Clustered plugins will have changed together often; if they are of the same
colour, the CCP is followed.

To obtain co-change clusters, we used Crocopat to compute from existing relations a
new binary relation UC(r, p), stating that plugin p was subject to an unforced change in
major, minor or service release r. As change we consider the creation and removal of p and
any change to p’s provided extension points or p’s fanout, because all those changes point
to internal modifications of p. CCVisu’s clustering algorithm will bring together all plugins
that are connected to multiple releases, i.e. plugins that are more often changed together.
CCVisu only shows the plugins (Figure 15), not the intermediate nodes corresponding to re-
leases. The average distances in the figure are as follows: intra-feature 78.2521, inter-feature
155.161, intra-subsystem 103.837 and inter-subsystem 144.412. Like for the dependency

142removed: companion HTML file

31

Fig. 15 Assessing the CCP, over all releases, for features (top) and subsystems (bottom)

clustering, average intra-unit distances are better than inter-unit, but this time the feature
decomposition is better: co-changes cross-cut subsystems more than they cross-cut features.

32

The [..143]web companion includes interactive versions of the figures in this and the
previous subsection, allowing one to see the name of each plugin by moving over or clicking
on each circle. [..144][..145][..146]

5 Discussion

First, taking just the quantitative results observed from the historic structural measurements,
we attempt to answer the assessment questions (Section 2.1) as directly as possible. Based
on those answers and further information from developers and other studies, we then address
the research questions, which includes the qualitative assessment of the architectural evolu-
tion of the Eclipse SDK. We conclude with potential threats to the validity of our approach
and of our answers to all questions, and with lessons learned from performing this research.

5.1 Assessment questions

The architecture

1. Eclipse follows a layered architectural style throughout its evolution, the root layer being
always the largest [..147]layer and where most plugins are added. Lower layers are
relatively stable. The number of layers almost tripled over the period studied.

2. About half of the initial architecture has formed for the past 8 years an architectural
core that contains fundamental documentation and functional plugins, forming almost
one tenth of the [..148]latest architecture.

Lehman’s laws

3. The architecture’s size is always growing and as such follows Lehman’s [..149]6th law
of evolution. Growth follows a segmented pattern [..150]and is superlinear if we ignore
the periods of no growth. Both characteristics have been observed for the source code
evolution of other systems.

143removed: companion HTML page
144removed: further RQ: do features align with clustering of dependencies according to dependencies?

====== The graph clustering layout is the same because they are based on the same plugin-dependency
graphs. However, according to different ways of partitioni the plugins (by features, by CVS modules or by
subsystems), these clustering layout may seem more modularised if, on average, the cohesive dependencies h
shorter distances whilst the coupling dependencies have longer distances. We then plot the evolution of these
metrics over releases, as shown in Figure ??.

145removed: Specifically, we measure the Euclid distance in the CCVisu layout for every pair of depen-
dent plugins. The average distance of the coupling dependencies and that of the cohesive dependencies are
obtained for each plugin dependency graph, where coupling and cohesion are defined based on the feature-
plugin containment relationship. A dependency is a coupling if and only if its source and target plugin belong
to different features. As shown by Figure ??, the average distance for both coupling and cohesion are grow-
ing, indicating the trend that increase of the graph sizes. On the other hand, the average distance for coupling
is greater than that of the cohesion, indicating that the clustering does quite well with respect to the natural
feature partitioning.

146removed: Evolution of the average distances of coupling and cohesive dependencies of the CCVisu
clustering layout

147removed: one
148removed: current
149removed: 6th
150removed: ,

33

4. The complexity, as measured by the number of dependencies among plugins, also steadily
increases, following the same segmented growth pattern [..151]observed for the plug-
ins. However, whether the rate is linear or superlinear is unclear.

5. There has been some effort to reduce the system’s growth, but overall deletions are
far fewer than additions. The major reduction efforts have been in releases 3.0 (small
size increase, decrease of coupling), 3.1 (decrease of complexity and coupling) and 3.5
(decrease of extension points). Of these, 3.0 can be considered a major architectural
[..152]restructuring due to the many unforced deletions and additions of plugins and
dependencies.

6. The segmented evolution patterns are due to a systematic development process in which
the architecture is mainly changed during the milestones of the next major or minor
release. Some release candidates may still introduce some small changes, but the ar-
chitecture is frozen for the last few builds before the release. Service releases introduce
(almost) no architectural changes, with the exception of the latest service release. All this
means that the evolution of Eclipse’s architecture follows a [..153]punctuated equilib-
rium pattern observed by Wu et al (2004) for other systems: long equilibrium periods
alternate with relatively short punctuation periods (mainly a few milestones).

Structured Design

7. The architecture’s cohesion has been steadily decreasing, except for the increase in 3.0,
when the number of dependencies grew much more than the number of plugins. Overall,
and independently of the type of dependencies considered, cohesion in 3.5.1 is about
1/8th of the value for 1.0.

8. Coupling, i.e. the number of external dependencies, is very small (Figure 7), especially
compared to the number of internal ones (Figure 5), and has been kept largely constant
after a substantial and explicit (i.e. unforced) reduction in release 3.0.

Martin’s principles

9. The Eclipse architecture follows the Acyclic Dependency Principle: the only non-trivial
cycle was removed during the major restructuring that led to 3.0.

10. The Open/Closed Principle is largely followed, i.e. Eclipse’s architecture evolves more
by extension than modification: the architecture has been changed more by addition of
plugins rather than through their internal modification (made visible through unforced
changes to dependencies). Additionally, many of the newly added extension points are
unused (as one can see by comparing the additions in (Figure 8) and Figure 10), which
means that the absolute and relative number of unused extension points has substantially
increased since 1.0. This in turn means that the SDK is opening up its plugins to provide
services to external plugins. However, there is also some indication that adherence to
the OCP might be diminishing: the average number of extension points per plugin has
halved since 3.0 (Figure 9) and unused plugins have been diminishing since 3.5. [..154]It
should be noted that unforced deletions of unused extension points are not problematic
for the OCP: the extension point has become used by the SDK, but remains available to
third-party plugins.

151removed: as
152removed: restrcturing
153removed: punctuated equilibrium
154removed: Note

34

11. The architecture largely follows the Stable Dependencies Principle: since release 3.0,
less than 3% of overall dependencies violate it.

12. Overall, the CRP is not violated, because the average intra-unit [..155]distanceis lower
than the inter-unit distance, i.e. plugins within the same top-level feature or subsystem
are on average clustered (according to use dependencies) closer together than those in
different features or subsystems. The distances are shorter for subsystems than features,
i.e. the CRP applies better to the former. However, the difference between intra- and
inter-unit distances has been decreasing, showing a deterioration of alignment with the
CRP (Figure 14). A visual inspection shows that there are no clear clusters of reused
plugins belonging to a single feature or subsystem (Figure 13). One can hence argue
that the CRP, while not violated, is far from being followed in an optimal way.

13. Like the CRP, the CCP is not violated, but neither does it seem to be strongly followed.
The reason is similar: on average, plugins within the same feature or subsystem are
changed more often together than those in different features or subsystems, but there are
no clear clusters in the visualization with only circles of the same colour (Figure 15).
Contrary to the CRP, features follow the CCP better than subsystems. This means that
closely dependent subsystems are not necessarily changed together. This can be con-
firmed by comparing Figures 13 and 15, noting that both use the same colour for the
same feature (or subsystem).

5.2 Research Questions

To answer the research questions, we have validated our results against other studies and
with developers. We e-mailed a very brief summary of our work to some SDK developers,
asking them to confirm, reject, or explain specific findings. We formulated the questions so
that they were focussed and could be answered with a simple yes/no or a brief sentence (see
[..156]appendix B), in order to increase the chances of getting an answer from those busy
developers. The e-mail was sent to developers of the IBM Rational Lab in Zurich whom
one of us had briefly met in February 2009. The Rational Lab team has made substantial
contributions to the SDK, in particular to the Java Development Tools, and is led by Erich
Gamma, a key figure in Eclipse since its origins at OTI.

[..157]

[..158][..159]
[..160]

155removed: distance is
156removed: the appendix
157removed: Validity of the approach
158removed: Our first research question (
159removed:) basically aims to evaluate whether our relatively simple structural model and its metrics is

enough to provide clear answers that complement and reinforce each other and can be the basis of a rich
assessment of architectural evolution. Note that by clear we do not mean necessarily a yes/no answer in every
case, because that will depend on the actual system being analysed; we mean that the approach is able to
provide enough evidence if such clear cut trends or patterns are in the data.

160removed: As shown in the previous section, answers were mostly clear and reinforce (e.g. in the case of
the segmented change pattern) or complement (e.g. in the case of the CRP and CCP) each other. Even though
our structural model has only a handful of elements (plugins, extension points, dependencies, modules, and
a build sequence), over which simple counts are plotted, its flexibility (e.g. allowing different dependencies,

35

[..161]
[..162]

5.2.1 Fitness for purpose of the approach

[..163]As explained in Section 2.2, the first research question asks whether our approach is fit
for the purpose of assessing architectural evolution. To answer the question, we must draw
on an analysis of the threats to validity, on related work, and on developer feedback in order
to consider whether our structural model and measurements are appropriate, the adopted
design guidelines and principles are meaningful at architectural level, and the approach is
relevant in practice.

While Lehman’s [..164]6th law is certainly followed, the actual growth trend seems to
be not very relevant, because the IBM developers told us that the superlinear growth of the
architecture has not caused any significant problems, e.g., of comprehension (Q2 in [..165

]appendix B). We conjecture this may be due to the just linear increase of the number of
Java files, classes and lines of code in the SDK (Mens et al 2008). The superlinear growth
of the number of plugins together with the linear growth of the code means that the average
size of each plugin is decreasing. We computed a boxplot of the number of classes per plugin
(Figure 16) and found that the median decreased from 117 in 2.0 to 55 in 3.5, while a few
large plugins became larger, i.e. have more classes.

The superlinear growth in the number of plugins, at a rate that matches or surpasses the
growth rate of number of dependencies, leads to the observed decrease in cohesion (Fig-
ure 6), contrary to [..166]expectations. The Eclipse SDK therefore falsifies the increased
cohesion guideline, showing that it is possible to sustain evolution and a thriving eco-system
of applications for years, in spite of a decreasingly cohesive architecture. We therefore con-
jecture this structured design guideline to be less relevant at architectural level, at least for
systems that offer a flexible set of components on which to build on, like the Eclipse SDK.
Of course, only further investigation with other case studies can confirm or refute our con-
jecture.

modules and sequences) and generality allow us to go a long way and obtain a rich picture of unforced
and forced changes, growth rates, change patterns, historic trends, and clustering analysis within and across
modules.

161removed: However, the approach might not always be able to give clear answers. The OCP, CRP and
CCP are analysed with multiple metrics, e.g. by comparing intra- and inter-module clustering distances of
different module types (subsystems vs. features, in our case). This makes it hard to provide a definite answer
from those various measures. On the other hand, it provides a richer and more realistic picture of the neces-
sarily complex and multi-faceted nature of software systems. Our proposal to measure two average distances
per modularization and per build goes towards providing an objective answer about adherence to the CCP
and CRP, making it possible to clearly see trends that would be nigh impossible to spot by visual comparison
of CCVisu’s pictures over multiple builds. However, we feel that our approach to the CCP and CRP may be
rather sensitive to the chosen modularization. Our choice of top- level features and subsystems may have been
too coarse-grained and therefore lead to less clear answers for these principles. As for the OCP, measuring
(unused) extension points as the indication of potential extension for third parties, while measuring additions
vs. modifications as indication of actual extension of the system itself, may have muddled the message.

162removed: To sum up, we answer research question 1 positively, apart from the approaches taken for the
OCP, CRP and CCP, which need a bit more refinement to avoid unclear answers.

163removed: Even though our approach may provide very clear answers, the questions may actually be
irrelevant for a variety of reasons: they may not be meaningful at architectural level, they may not influence
the system’s success, or they may not capture developers’ intentions.

164removed: 6th
165removed: the appendix
166removed: expectation

36

Fig. 16 Evolution of the number of classes per plugin

Our analysis of the OCP by comparing architectural additions to modifications may not
reflect development reality: Mens et al (2008) found that more files are modified than added,
while we found that more plugins are added than modified. The results are not contradic-
tory because we consider only a subset of modifications, those that change dependencies
between plugins. However, this points to a potential threat to validity of our first OCP met-
ric, as it is incapable of capturing all internal modifications. On the other hand, our analysis
of the OCP as the architecture’s potential extension, by measuring extension points (Sec-
tion 4.7), is likely to be more relevant for infrastructure architectures like the SDK’s: the
developers confirmed that they are ‘opening up’ existing plugins (Q6). However, whether
there is actual extension of the SDK through those extension points requires an analysis of
many other Eclipse and third-party plugins. Overall, we feel that our current approach is not
fit for purpose to assess the OCP at architectural level of a single system. Some variation of
our second metric might be [..167]needed to assess whether eco-systems of plugin-based
architectures are adhering to the OCP by extending existing plugins rather than adding new
ones, but that requires further investigation.

The IBM developers told us that they adhere explicitly to the architectural change pro-
cess we found (Q3) [..168]

– that the small amount of deletions (and the absence of unforced deletions of extension
points) is to preserve backwards compatibility (Q1 and Q6)[..169];

167removed: useful
168removed: ,
169removed: ,

37

– that cyclic dependencies are removed to keep plugins independently usable (Q4)[..170];

– that 3.0 was indeed a major architectural change due to the introduction of the Rich
Client Platform and they suggest that the complexity decrease in 3.1 might have been a
clean-up (Q5)[..171];

– that they are aware of the architectural core and that it was designed as such (Q9), and
– that extension points tend to be created in existing plugins because new plugins tend to

be in the root layer and hence are less good hosts for extension points than the more
‘central’ plugins, i.e. in deeper layers (Q6).

The developers also confirmed that having finer-grained plugins is an explicit architec-
tural aim (Q2), which means that while the actual growth rate may be of little relevance for
architectural evolution, the corresponding assessment question (number 3 in Section 2.1)
can help uncover architectural intentions. Our finding about the CCP was partly confirmed,
in that developers told us that team structure loosely maps to features (Q7). Last but not
least, we were explicitly told that not breaking APIs is a major goal, with extension points
being part of a plugin’s API. Hence, several of our observations, like few (mostly forced)
deletions, are actually manifestations of this more fundamental aim. As a further example,
the architectural core is stable because it provides many APIs. All this confirmed that many
of our observations stem, directly or indirectly, from intentional choices, thereby supporting
the relevance of our approach for architectural evolution practice.

[..172]
To sum up, [..173][..174][..175]
[..176]

170removed: ,
171removed: ,
172removed: We finally turn to the relevance of the questions in uncovering contributions to a system’s

success. Although establishing a direct link between certain architectural practices and a system’s success
(whatever its definition) is probably nigh impossible, we are confident that the questions and their answers
helped us find contributing factors to such success. For example, the systematic change process, and in partic-
ular the architectural freeze in late release candidates, the explicit aim of not breaking APIs, the finer-grained
plugins, and the absence of cyclic dependencies to keep plugins independently usable, are all likely to facili-
tate both development of the SDK itself and of third-party plugins and applications, thus contributing to the
success of sustaining architectural evolution over a long period and the success of an ever-increasing eco-
system of contributions to Eclipse. The contribution of the complexity reduction in 3.1 is to be determined: it
may have broken existing third-party applications but it also may have make it easier to develop new ones.

173removed: the developer feedback indicates that, in general, our questions are relevant for assessing ar-
chitectural evolution, as they capture directly or indirectly guidelines and principles that developers explicitly
aim for: absence of cycles, systematic change process, opening up existing components to extension, not
breaking APIs, etc. However, complementary investigations at implementation level indicate that assessing
the growth (Lehman’s 6th law) and checking for increased cohesion seem to be less relevant questions at
architectural level.

174removed: Given the above results, we divide the considered laws, principles and guidelines into three
groups of appropriateness for assessing architectural evolution.

175removed: The first group includes Lehman’s laws, coupling, the ADP, and the SDP, i.e. those principles
we believe can be sensibly assessed at architectural level, because they can be checked in a relatively simple
and direct way (even if not necessarily using the same metrics as ours) to provide relatively objective answers.

176removed: The second group includes the CRP and the CCP, the principles that we believe are relevant
and sensible at the coarse-grained level of reusable architectural components, but the assessment of which
is harder because of greater subjectivity. Our structural model of elements and modules, together with the
historical snapshots, is adequate to capture release units, reuse dependencies and co-change, and the measures
of average distance provide some objective assessment of the principles at a system-wide scale. However, to
assess the principles for individual release units, it requires subjective analysis based on application-specific
knowledge.

38

[..177]
[..178]except for cohesion and the OCP, our assessment approach is largely fit for pur-

pose of assessing architectural evolution. We would furthermore suggest that the actual
growth rate of an architecture is not critical for its sustainable evolution, but we nevertheless
keep assessment question 3 because it asks about growth patterns in general.

5.2.2 Assessment of the case study

Applying the assessment approach to the Eclipse SDK has provided quantifiable evidence,
mostly confirmed by developers, of the following good architectural evolution practices:

– an upfront good design that provides a stable architectural core;
– the use of a single, familiar architectural style throughout history;
– the top layer, with highest instability, is indeed where most additions occur;
– a systematic architectural change process of punctuated equilibrium;
– few deletions overall, in particular unforced ones, to help keep backward compatibility;
– decreased coupling to external components;
– [..179]acyclic dependencies, and in the direction of stability;
– unforced addition of extension points, i.e., existing plugins are opened for extension.

From developer feedback we further learned that the team structure loosely follows the
modularization that best matches the CCP, i.e., features. This may facilitate coordination
and labour division of changes, and hence be one more lesson for architectural evolution.

We have however also observed a trend that may cause concern. [..180]
Throughout history, the average intra-unit distance is approximating the inter-unit dis-

tance, i.e. dependencies tend to be less well contained within subsystem and feature bound-
aries. This is a sign of architectural decay: the higher-level modules [..181]are becoming less
effective as release units to users and structuring devices for code. [..182]

To sum up, while the Eclipse SDK adheres to several principles and guidelines through
a set of clearly observable practices, there is room for improving the architectural alignment

177removed: The third group includes cohesion and OCP, for which no clear answer was obtained. This is
the group of principles and guidelines which we believe might either not be appropriate at architectural level
(e.g. how does one sensibly define openness of an architecture?) or at least cannot be assessed just in the
way we did in this paper (e.g. by comparing additions against fanout modifications). For example, Eclipse
developers at IBM Zurich told us that there was no aim on their part to keep cohesion relatively constant.
On hindsight, the relatively narrow spread of cohesion, which is the average degree of the nodes in the
architectural graph, might be just the consequence of a ‘natural’ limit of the typical number of dependencies
of each component. If that is true, architectural cohesion will always be low, thus becoming a meaningless
concept unless it is measured in a different way.

178removed: To sum up,
179removed: dependencies are acyclic
180removed: We were not expecting a superlinear growth of the size. We assumed that, to remain useful

and understandable to stakeholders, an architecture has to evolve within reasonable rates. Together with
the doubling of layers in 3.0, one may argue that the cognitive load to understand Eclipse’s architecture
is increasing substantially. This may not be an issue because of the project’s strong and stable backing by
IBM. However, for more typical OSS projects, with fluctuating development teams, the rapid increase of an
architecture might pose comprehension and maintenance problems.

181removed: (features for users and subsystems for developers)
182removed: The opposite relation of the intra-feature and intra-subsystem distances for the CRP and CCP

means that plugins tend to be put into subsystems according to their dependencies, but are then changed
according to the features they implement. In other words, changes tend to cross-cut subsystems more than
features, which doesn’t facilitate coordination and labour division among the software developers.

39

of plugins with subsystems and features. Overall, we can present the Eclipse SDK as a
pedagogical example of good architectural evolution practice. [..183]

5.3 Threats to validity

Like any other empirical study, the validity of ours is subject to several threats. In the follow-
ing, we discuss threats to construct validity (relationship between theory and observation),
internal validity (whether confounding factors can influence your findings), and external
validity (whether results can be generalized).

5.3.1 Construct validity

A potential threat when proposing any metrics is that they don’t adequately measure the
intended concepts. In our case, the construction of the structural model and its metrics (Sec-
tion 3.2) might not capture the concepts of size, coupling, cohesion and complexity at the
architectural level. However, the adoption of a general and unifying framework (Briand et al
1996) that covers various existing metrics, as the authors show in their paper, and that dis-
tils fundamental intuitions (e.g., that the more relations a module has with others, the more
coupled it is, or that the more relations a system has between its elements, the more com-
plex it is) into a set of axioms, means that any metrics adhering to those axioms will also
capture those intuitions, no matter at what level the metrics are defined. The minimalist and
abstract graph-based nature of the framework (requiring just the definition of elements, their
relations and the modules they belong to) makes it possible to define elements and modules
at any granularity level (e.g. an element may be a single datum or instruction or a complete
architectural component), and thus to have meaningful metrics at different levels, as Briand
et al (1996) exemplify in their paper. Moreover, because the axioms are expressed in terms
of different entities (e.g. cohesion is based on intra-module relations while size is based on
elements), by basing our metric definitions directly on those entities, we are assured that our
metrics are conceptually coherent with each other (e.g our cohesion metric is not measuring
size or vice-versa)184. To sum up, the adoption of the measurement framework assures us
that our metrics are appropriate to capture size, cohesion, coupling and complexity at the
architectural level.

Even though the metrics are meaningful, they and the structural model may be too simple
to provide adequate answers to the architectural evolution assessment questions. However,
as shown in Section 4, even though our structural model has only a handful of elements
(plugins, extension points, dependencies, modules, and a build sequence), over which sim-
ple counts are plotted, its flexibility (e.g., allowing different dependencies, modules and
sequences) and generality allow us to go a long way and obtain a rich picture of unforced
and forced changes, growth rates, change patterns, historic trends, and clustering analysis
within and across modules. Moreover, the approach allows the answers to the assessment

183removed: This would increase the adherence to the CRP and CCP, i.e. dependencies and changes would
be better contained within subsystems and features, thereby facilitating software development and incremen-
tal feature installation.

184We should point out that the axioms are only meant to distinguish the concept(s) being measured by
a metric; the axioms don’t enforce independence of the metrics. For example, coupling and cohesion aren’t
completely independent of complexity because the latter is based on all relations, whereas the former two
are based on the subsets of inter-module and intra-module relations, respectively. This means that the various
monotonicity axioms together impose that adding intra-module relations will decrease neither cohesion nor
complexity, and likewise adding inter-module relations doesn’t decrease coupling and complexity.

40

questions to reinforce (e.g. in the case of the segmented change pattern) or to complement
(e.g. in the case of the CRP and CCP) each other.

While the use of a single axiomatic framework means that our basic metrics are well
defined and consistent with each other, the use of multiple metrics to analyse the OCP, CRP
and CCP is a threat to construct and internal validity for those principles, hence leading
to less clear answers for them in Section 5.1. On the one hand, the two ways we measure
adherence to the OCP confuses potential [..185]extensions for third parties, via the (un-
used) extension points, and actual [..186]extensions of the system itself, via a comparison
of additions vs. modifications. On the other hand, our approach to the CCP and CRP may
be rather sensitive to the chosen modularization: the choice of top-level features and sub-
systems may have been too coarse-grained and therefore may include confounding factors.
However, using multiple metrics for the same principle provides a richer and more real-
istic picture of the necessarily complex and multi-faceted nature of software systems. For
example, our proposal to measure two average distances per modularization and per build
goes towards providing an objective answer about adherence to the CCP and CRP, making
it possible to clearly see trends that would be nigh impossible to spot by visual comparison
of CCVisu’s pictures over multiple builds.

A further identified construct validity threat is missing primary data. Our assumption
that the main punctuation periods are milestones relies only on the milestones and release
candidates for releases 3.2 and 3.3. If we had the interim builds for all the other minor
releases, the result might be completely different. This was mitigated by [..187]the devel-
opers’ feedback.

Another example of a threat to construct validity is that the dependencies defined in
the metadata might be missing relevant dependencies between the plugins’ classes. That
would explain why we found no cycles, while Melton and Tempero (2007) report thousands
of cycles among Eclipse’s classes, some of them involving hundreds of classes. Another
possibility is that the granularity of plugins is such that cycles remain within the same plugin.
Only a replication of their study, but considering plugin boundaries, can tell.

5.3.2 Internal validity

Besides the threats to internal validity of the OCP, CCP and CRP analysis mentioned above,
bugs in our tool infrastructure will lead to wrong measurements which in turn might inval-
idate some of our analysis. Given our multi-faceted measurements over the same Eclipse
build data, we can cross-check the outputs for coherence. For example, we noticed our
scripts were missing several features when we saw the layouts of the bottom and top of
Figure 13 were different, and corrected the mistake. [..188]189 [..190]

Although we did not account for the renaming of plugins (Section 3.2), we do not think it
is a serious threat to validity. Renamings are currently a subset of the intersection of deletions
and additions and hence must be few in number, because there are not many deletions.
Accounting for renamings would just slightly increase the number of previous plugins and

185removed: extension
186removed: extension
187removed: developer
188removed: We will clean up and document our scripts and deposit them in our institution’s open access

research repository
189[..190]
190removed: as an architectural evolution analysis tool, so that others can replicate and adapt our study to

other systems and in the process find any remaining bugs.

41

slightly decrease the number of additions and deletions, without changing the substance of
our findings.

Finally and more importantly, small variations in the data to be included or discarded
can make a big difference in the results. For example, we initially considered all plugins
and obtained a growth in size that was truly astounding. Looking at the data, we saw the
many added org.eclipse.*.source plugins, which we subsequently ignored. Other examples
are the exclusion of self-cycles for computing instability and checking the SDP, and the
definition of unforced changes. All these decisions are part of the empirical study design
and we have justified them throughout the paper.

A further threat is that the opinion of very few developers might not be representative
of the wider Eclipse SDK team. However, the contacted developers are very experienced
and contribute to important parts of the SDK, like the Java Development Kit. We therefore
assume their feedback carries authority.

5.3.3 External validity

Our analysis of the relevance of questions might be biased by two characteristics of the
Eclipse SDK: the relatively ‘homogeneous’ development team, mainly provided by IBM,
and the nature of the system, an application framework. [..191]These two factors mean,
for example, that the relevance of a stable architectural core might be smaller for a ‘black-
box’ end user application, and that the rapid increase of an architecture and its loss of cohe-
sion might be more relevant for open source projects with fluctuating development teams.
However, this threat is somewhat mitigated by having chosen a paradigmatic case study
that represents an important set of widely used professional open source software systems.
Moreover, given that most of the principles we analysed are very general, they should be
relevant for most large and complex systems that require sustainable and effective architec-
tural evolution, although the relative importance of each assessment question may vary from
system to system.

5.4 Lessons learned

In addition to several general issues to consider when analysing a software system’s
evolution from its repository (Wermelinger and Yu 2011), we learned some concrete
valuable lessons in the process of doing the research reported in this paper[..192].

Keeping a local copy of primary data, even if it is easily and freely accessible on the
internet, is highly recommended. The Eclipse project no longer keeps older milestones and
release candidates in their archive, in order to save storage and bandwidth. Therefore, if we
hadn’t kept a copy of those builds from the initial stages of our work, [..193]it would have
been more challenging to analyse what happens between major and minor releases, i.e.
where exactly architectural changes are introduced.

Developers of successful projects are extremely busy: providing a succinct list of fo-
cussed questions, preferably with multiple choice options, is a good way to elicit feedback.
Although we sent some drafts of this work to the IBM developers for their feedback, we
only got a reply when we e-mailed a short list of specific questions. Moreover, one should

191removed: This means
192removed: we learned some valuable lessons
193removed: we wouldn’t have been able

42

ideally avoid contacting developers during major release periods, but paper deadlines may
not give much leeway.

Empirical research is a constant feedback loop between the data and the researchers.
Results of one iteration inform the next iteration. For example, as we said in Section 5.3,
the initial results of the size chart led to the filtering out of source plugins, because it would
be effectively double counting of the same plugin, once as functionality provider and once
as documentation provider. The use of particular tools may also lead to unexpected further
investigations. For example, we adopted CCVisu to visualise the clustering of plugins ac-
cording to dependencies, and it was the tool’s use of physical 2D locations to layout the
clusters that triggered our idea to check the CCP and CRP by capturing a whole picture as
the average distances of the x/y-coordinates of plugins and then plotting them over time.

6 Related Work

This paper complements a large body of empirical work on design heuristics and principles,
on evolution patterns, and on Eclipse. We necessarily refer to only a small subset of it.

6.1 Design

Although many design heuristics have been proposed (Parnas 1972; Liskov 1987; Johnson
and Foote 1988; Lieberherr et al 1988; Meyer 1992; Lakos 1996; Riel 1996), few of them
have been validated through empirical studies. One early proponent of the study of viola-
tions of design heuristics was Ciupke (1999). Since then, all kinds of approaches have been
taken, from the very concrete ones that negate the statements of the design heuristic and con-
vert them into logic clauses (Ciupke 1999), to the very abstract ones, like bad smells (Fowler
et al 1999) and anti-patterns (Brown et al 1998), which are symptoms of potentially inappro-
priate design abstractions. Algorithmic mechanisms to automatically detect such symptoms
use metrics (Marinescu 2001; Tahvildari and Kontogiannis 2003; Crespo et al 2005; Munro
2005; Walter and Pietrzak 2005), logic clauses (Tourwe and Mens 2003), historical informa-
tion about source code changes (Xing and Stroulia 2004), or a combination of approaches
(Moha et al 2006).

Other work attempts to evaluate the effect of following (or not) a design heuristic or pat-
tern. For example, Juergens et al (2009) aim to correlate code cloning with fault proneness,
and Ratiu et al (2004) find that bad smells like [..194]god- and data-classes are persistent
but stable. More related to this paper are the studies of Basili et al (1996) and Briand et al
(2000), showing that fault proneness might be correlated with lack of cohesion and high
coupling. However, it seems that these results come from the confounding effect of the size
of classes (Emam et al 2001). Nevertheless, this does not refute the findings with respect to
other software quality attributes such as maintainability, understandability, or reliability. For
instance, Dagpinar and Jahnke (2003) showed that cohesion and indirect/export coupling
measures are not correlated with maintenance, but coupling defined as direct import rela-
tions (which correspond to the static dependencies in this paper) is inversely correlated with
maintainability.

Simon (1962) argued that using hierarchical structures reduces system complexity, but
Briand et al (2000) used software metrics to show that deep hierarchies are correlated with

194removed: god and data classes

43

fault proneness, and probably indicate a high cognitive complexity of classes. That might
explain why the depth of Eclipse’s hierarchical structure has grown slowly after [..195]it
doubled from 6 to 13 in 3.0 (Section 4.1).

As for the empirical analysis of Martin’s principles, Melton and Tempero (2007) also
looked at the ADP, by measuring across a wide range of Java applications the lengths of
all cycles present in each application, finding many long cycles that may [..196]impede
comprehension. One must however note that several kinds of dependencies (inheritance,
calls, imports, etc.) were brought together in the same cycle, which may inflate results.

Hansen et al (2009) computed three architectural metrics and four product metrics on
the Java source code of 1,141 SourceForge projects, and applied regression models to see if
architecture has an effect on product quality. One of the architectural metrics is the average,
over all packages of a project, of a metric proposed by Martin (1997) to check his Stable
Abstractions Principle (SAP): “the abstraction of a package should be in proportion to its
stability”. Modifying abstract packages, i.e. those that contain interfaces implemented by
other packages, can have ripple effects, hence they should be stable. [..197][..198][..199]

Hansen et al found that mid-range values of the SAP-adherence metric lead to better
values of the product metrics, e.g. a lower ratio of open to total defects. However, the authors
point out that while their findings have high statistical significance due to the number of
projects analysed, the spread of values is large. The regression models are therefore not very
adequate for assessing single projects.

Although we initially considered the SAP, we couldn’t come up with any suitable archi-
tectural level metric in alternative to Martin’s metric, which requires the number of abstract
classes and interfaces, information that is usually not available at architectural level, and
in particular can’t be obtained from Eclipse’s metadata. We hence discarded the SAP from
our assessment because it doesn’t satisfy our second and third requirements (Section 2.1):
‘abstractness’ is not a concept that is meaningful or measurable of architectural components
in general. [..200]

6.2 Evolution

The pioneering work of Lehman and Belady (1985), a systematic and longitudinal study of
software evolution, originally involved the IBM OS/360 operating system. The main find-
ings showed that its growth in size (number of source files) was at first linear, but after a
specific point it became unpredictable. In contrast with that result, thirty years later Godfrey
and Tu (2000) highlighted that the growth of the Linux kernel followed a superlinear rate

195removed: the doubling
196removed: difficult
197removed: Measuring instability and abstractness in the
198removed: 0,1
199removed: interval, the principle states that the sum of abstractness and instability should ideally be 1

for each package, which Martin calls the main sequence. He hence proposes to measure for each package its
orthogonal distance from the main sequence.

200removed: Our definition of module and its metrics is inspired by the axiomatic metrics framework of
Briand et al (1996), who defined a generic graph-based model for systems, modules and elements, and then
propose several properties that measures of size, complexity, cohesion and coupling should have, comparing
their framework with existing ones. We did not follow their definition of system and module as it leads
to slightly convoluted properties, depending on whether the system is being measured through its elements
or through its modules. However, our module metrics, if applied to their system model, satisfy the stated
properties.

44

(e.g. a quadratic curve). Investigating the subsystems composing the Linux kernel, addi-
tional findings suggested that the drivers module was the fastest growing of all. Considering
the architecture of Linux, this highlights the fact that a plugin-based component (e.g. the
I/O component) can achieve alone a largely different evolution with respect to other com-
ponents in the same system, fundamentally raising the question of whether or not Lehman’s
laws should be considered valid for the case of open source systems (OSS) systems.

That question was investigated by Fernández-Ramil et al (2008), who surveyed several
studies on the evolution of OSS. [..201]Most of them analyse the source code, reporting for
example the evolution of LOCs or of the McCabe complexity. Some systems have a uniform
growth pattern, e.g. superlinear growth throughout their life, while other systems exhibit seg-
ments with different growth patterns, including no growth at all. The authors concluded that
OSS systems seem to have less regular, and hence less easy to predict, growth patterns than
proprietary systems, and that evolutionary trends exhibit discontinuities. Our work provides
one more data point about OSS evolution, this time at the architectural level, contrary to
most existing studies. We were able to also detect a discontinuous (i.e. segmented), and yet
quite regular, superlinear growth pattern.

Eldredge and Gould (1972) proposed a theory of evolutionary biology, called punctu-
ated equilibria, stating that biological evolution occurs mostly in rapid bursts of speciation,
contrary to the until then assumed slow and continuous development of new species. Wu
et al (2004) adopted the same viewpoint, with architecture taking the analogue of biological
morphology. They put forward the hypothesis that software architecture controls the transi-
tions between equilibrium and punctuation periods in the evolution. In equilibrium periods,
changes are relatively minor and usually do not violate architectural constraints, while punc-
tuation periods, which are relatively short, focus mostly on architectural changes in order to
achieve stability in the long run. Wu et al. studied three open source systems written in C and
analysed the monthly evolution of static dependencies between files as a way to approximate
architectural changes.

In comparison, our study uses more reliable and higher-level sources of information.
Instead of reverse engineering the architecture from classes, which would largely correspond
to files, we use configuration metadata about architectural components. Instead of hoping
that a chronological analysis of fixed time periods might reveal architectural changes, we
start with the logical sequence of builds. Moreover, we sample different kinds of builds so
that we can check whether they correspond to particular periods: indeed, service releases
and most release candidates represent equilibrium periods, [..202]while milestones are the
punctuation periods.

In his PhD thesis, van Belle (2004) proposes two system evolution metrics, breadth and
weight, to quantitatively analyse Martin’s Common Reuse and Common Closure Principles.
The breadth is the average number of units touched by changes made to the system, while
the weight is the average size of all units touched by changes. Such metrics were used to
compare the reuse units (packages) defined by developers against those automatically gen-
erated by restructuring the code in such a way that the breadth and the weight are reduced.
The author concluded that although automatically generated modularity can outperform a
human-generated one, suggesting more efficient ways of organizing the code entities with
respect to past evolution, the semantic coherence required by humans is hard to capture by
automatic clustering techniques.

201removed: and report how they relate to Lehman’s software evolution laws and to studies of proprietary
systems.

202removed: and

45

Van Belle also proposed to measure the likelihood, impact and acuteness of change
of individual elements (e.g. methods). A high acuteness means that the element changes
infrequently (low likelihood), but when it does, it has a big impact (many co-changes).
The author then relates his metrics with Martin’s SDP concepts: responsible elements have
high impact of change, independent elements have low likelihood of changing, and hence
stable elements have high change acuteness. Van Belle argues that his approach goes further
than Martin’s, because it analyses the closure of change propagation (by observing all co-
changes) and not just an element’s immediate structural neighbours.

Change likelihood, impact and acuteness are suited for a low-level analysis (i.e. at code
level) of fine-grained evolution (e.g. after each commit transaction), because the approach
depends on an assurance that the observations do indeed capture change propagation, i.e. in-
tentional co-changes. In our case study, each SDK build includes multiple, unrelated archi-
tectural changes over various subsystems and features, and therefore the impact and acute-
ness measures would be inflated [..203]and coarse-grained. In fact, in previous work
(Wermelinger et al 2008), we found some relation between stability and acuteness
for the Eclipse SDK, but not strong enough for the former to predict the latter. In-
deed, it’s unclear how van Belle’s metrics could be used for assessment, the aim of this
paper. Observing that an element had high change acuteness in the past is by itself not an
indicator of good or bad design. What is important is for that element to have dependencies
in the direction of stability to facilitate any future changes, and that is what we assess by
checking adherence to Martin’s SDP principle.

6.3 Eclipse

Although there are several empirical papers using Eclipse as case study, most are about
unrelated topics, like bug prediction.

Mens et al (2008) also analyse the evolution of the Eclipse SDK, but have different
goals, concentrating just on the verification of Lehman’s first, second and sixth laws: the
common aims with this paper are hence only Questions 3 to 5 (Section 2). They also rely
on different primary data, mainly the binary code for Windows, and only for major and mi-
nor releases up to 3.3, whereas we look only at metadata, but for more builds. On the other
hand, their narrower scope and use of bytecode allowed a more in depth treatment of size
and complexity, with various metrics being applied at different levels. For example, Mens
et al also find that the number of plugins increases superlinearly, but that the number of
classes, files and lines of code grows linearly, and that the size of each subsystem relative to
the overall system size remains remarkably uniform. The authors state that if one assumes
complexity is a function of size, then complexity is increasing, which is compatible with our
structural view of complexity. They add that if complexity is assumed to be an inverse func-
tion of productivity, with sublinear growth suggesting increased complexity, then there is no
evidence of increasing complexity. Furthermore, they analyse the code of each subsystem
with the commercial STAN204 tool for structural complexity code analysis, and find that the
number of warnings increases linearly for the jdt and ui subsystems, and remains constant
for the other ones. Since the overall number of complexity warnings and the size of code
(in files, classes, or lines) both increase linearly, this third view of code complexity suggests
it remains constant per code unit. Together, the authors’ findings at lower granularity levels

203removed: . Moreover,
204[..205]http://www.stan4j.com

46

and our assessment of Eclipse’s architectural evolution, might explain why the increase of
architectural complexity does not lead to unsustainable growth. [..206]

Hou (2007) looked at source code and release notes to investigate how the design of the
Eclipse Java editor evolved. The main aim was to see how design evolves and accommo-
dates additional features. One of the results was that having a stable model-view-controller
architectural pattern was beneficial for evolutionary design. This echoes our finding of a
stable layered core, and reinforces the lesson that well known architectural styles and design
patterns can provide a solid foundation for system evolution.

Like any complex software system, there are many different ways of analysing and mea-
suring Eclipse and its changes. The above two studies and ours thus offer complementary
perspectives, together providing richer insights into Eclipse and the general lessons that can
be learned for software design and evolution.

[..207]

[..208]

[..209]

[..210][..211] [..212][..213]

[..214]

[..215][..216][..217]

[..218]

206removed: They also find that more files are modified than added, which further reduces the applicability
of the OCP. They find no overall evidence of increase of complexity, although they measure it in various
ways, different from ours.

207removed: relatively little refactoring work, but peaks of it
208removed: Wermelinger et al. ? studied the architectural evolution of Eclipse, by looking at the level

of features and plugins only. More in particular, they analysed the dependencies between plugins based on
metadata (stored in manifest files and XML files). Their goal was to find out to which extent the Eclipse
plug-in architecture follows structural design principles (such as coupling and cohesion) that have been re-
ported in literature. Our own work complements this approach in different ways. First, we have studied a
totally different set of empirical data (i.e. source code and compiled code). Secondly, most of our analysis is
performed at a finer level of granularity (e.g., classes and lines of code). Finally, our goal is not to study in
detail the architectural evolution of Eclipse, but to assess, more generally, whether Eclipse conforms to the
laws of software evolution.

209removed: As a whole, Eclipse is a complex system and there are many different ways of measuring it.
For instance, we focused on the Eclipse SDK for Windows. This may explain why there are differences in
measurement values (e.g. number of plugins) with respect to other studies (e.g. ?)

210removed: In Wermelinger and Yu (2008) we looked mostly at whether a process was followed.
211removed: this has to come in intro
212removed: We observed there is a continuous growth (Lehman’s 6th law) but not during maintenance

releases, which can be seen in part as a manifestation of Lehman’s 5th law – conservation of familiarity.
213removed: explain why not adopted
214removed: read Melton and Tempero (2007); Melton (2006)
215removed: Ciupke
216removed: 1999
217removed: was the first one that attempted to detect the violation of design principles. He made queries in

prolog. Many followed him like Marinescu (with groups of OO metrics), Simon (with distance metrics), van
Emden (finding certain coding styles) and Kataoka (finding invariants of a program, and then finding their
variants)

218removed: Does it make sense to talk here about origin analysis (i.e. a dependency that was renamed or
moved instead of one deleted and another one added)?

47

7 Concluding remarks

The paper makes two significant contributions. The first is a replicable architectural evolu-
tion assessment framework, made of assessment questions, a data model, and a tool infras-
tructure, that share various qualities: they are generic, flexible, light-weight, and extensible.
The assessment questions probe basic and fundamental principles that are independent of
particular domains, paradigms and languages and may have a wide-ranging effect on sys-
tem development. The questions can hence be [..219]posed in other case studies, com-
plementing fine-grained perspectives on design. The relational data model can be applied
at various levels of abstraction. It is based on a simple core of concepts and measurement
axioms by Briand et al (1996), which we instantiated with particular metrics and extended
to handle build sequences and service-providing components, leading to a rich picture of
an evolving system: unforced changes, cycle analysis, clustering distances, etc. Finally the
tool infrastructure generates [..220]the data and the corresponding visualizations that help
[..221]spotting deviations from established trends and practices, and hence could be part
of an architect’s or project manager’s dashboard.

Our assessment framework was applied to a paradigmatic and ‘most likely’ critical case
study (Flyvbjerg 2006): the Eclipse SDK, a large, mature, complex, and successful applica-
tion framework, on which many other Eclipse and third-party projects depend, and therefore
requires good architectural evolution practice for its continuing success. This choice, to-
gether with developer feedback and information from another study on the SDK’s code base
evolution, allowed us to validate that our assessment approach was largely fit for purpose.
We found that some design guidelines and principles are not quite measurable or meaningful
at architectural level or not relevant for sustainably effective architectural evolution.

The second significant contribution is the rich narrative account of the architectural evo-
lution of a single case study, which can therefore be offered as a pedagogical exemplar of
bad and/or good practices. In particular, our assessment concludes that the Eclipse SDK
follows several practices that support sustainable architectural evolution, and that have di-
rect impact on its success as application framework, because several of the practices emerge
from the more fundamental aim of managing APIs carefully, like avoiding to break existing
APIs, and adding APIs to existing responsible components. However, we also observed a
trend that may suggest some architectural decay, but developers weren’t able to comment on
it.

A single case study is of course not enough to conclusively prove the relevance and
adequacy of our proposal for architectural evolution assessment, and we certainly do not
claim the list of assessment questions is necessary and sufficient for all kinds of systems. We
therefore hope that the light-weight, generic and tool-supported approach, together with the
presented developer-supported validation of a non-trivial case study, will inspire further case
studies. They would be a worthwhile source of concrete knowledge for anyone interested in
evolving a system the success of which crucially depended on its architecture.

[..222]

219removed: asked for many
220removed: data and
221removed: spot deviations to
222removed: Much advice on software design has been put forward throughout the years, in the form of

principles, heuristics and guidelines and accompanying techniques and tools (e.g. for refactoring). There has
been however relatively little empirical research on the benefit of such advice. Moreover, most of those studies
have been about low-level design abstractions, like classes and methods, and often about very specific design
guidelines (e.g. god classes). This paper differs from existing work through a combination of three factors: it

48

[..223]

Acknowledgements

We thank Markus Keller, Daniel Megert, and Martin Aeschlimann from the IBM Zurich
Rational Lab for their feedback, partly given during the preparation of release 3.6, Dirk
Beyer for helping us use CCVisu more effectively, and the anonymous reviewers for their
detailed and insightful comments, which helped improve the paper[..224][..225].

The third author has been supported by the ICT Impulse Programme of the Institute
for the encouragement of Scientific Research and Innovation of Brussels (ISRIB), and by
the Interuniversity Attraction Poles (IAP) Programme of the Belgian State, Belgian Science
Policy.

References

Basili V, Briand L, Melo W (1996) A validation of object-oriented design metrics as quality indicators. IEEE
Trans Softw Eng 22(10):751–761

van Belle T (2004) Modularity and the evolution of software evolvability. PhD thesis, University of New
Mexico

Ben-Ari M (1982) Principles of Concurrent Programming. Prentice-Hall
Beyer D (2008) CCVisu: automatic visual software decomposition. In: Proc. of Int’l Conf. on Software En-

gineering, companion volume, ACM, pp 967–968
Beyer D, Noack A, Lewerentz C (2005) Efficient relational calculation for software analysis. IEEE Trans

Software Eng 31(2):137–149
Bloch J (2001) Effective Java. Addison-Wesley
Bois BD, Rompaey BV, Meijfroidt K, Suijs E (2008) Supporting reengineering scenarios with FETCH: an

experience report. Electronic Communications of the EASST 8, selected papers from the 2007 ERCIM
Symp. on Software Evolution

Briand LC, Morasca S, Basili VR (1996) Property-based software engineering measurement. IEEE Trans
Software Eng 22(1):68–86

Briand LC, Morasca S, Basili VR (1997) Response to: Comments on “property-based software engineering
measurement: Refining he additivity properties”. IEEE Trans Software Eng 23(3):196–197

Briand LC, Wüst J, Daly JW, Porter DV (2000) Exploring the relationship between design measures and
software quality in object-oriented systems. J Syst Softw 51(3):245–273

Brown W, Malveau R, Mowbray T (1998) AntiPatterns: Refactoring Software, Architectures, and Projects in
Crisis. Wiley

Ciupke O (1999) Automatic detection of design problems in object-oriented reengineering. In: Proc. of the
Technology of Object-Oriented Languages and Systems (TOOLS), IEEE, p 18

Crespo Y, López C, Marticorena R, Manso E (2005) Language independent metrics support towards refactor-
ing inference. In: Proc. of the Int’l workshop on Quantitative Approaches in Object-Oriented Software
Engineering (QAOOSE), Glasgow, UK, pp 18–29

Dagpinar M, Jahnke JH (2003) Predicting maintainability with object-oriented metrics - an empirical com-
parison. In: Proc. Working Conf. on Reverse Engineering (WCRE), IEEE, pp 155–164

looks at various very generic principles and guidelines; it addresses the architectural level; it takes a historical
perspective. With such an approach we make three contributions.

223removed: We are currently starting to ‘eat our own food’, by applying the infrastructure to two systems
written in C. Although the elements and relationships are different from Eclipse’s plugins and their static
and dynamic dependencies, and were extracted from the repository in a completely different way, once they
are represented in our data model, the same analysis and visualization scripts can be run. However, further
research is needed to see how best to overcome the absence in the C systems of some concepts (like extension
points and features) that are required in the current way we check some of the principles (e.g. the OCP and
the CRP).

224removed: .
225removed: This work

49

Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf T (ed)
Models in palaeobiology, Freeman and Cooper, San Francisco, pp 82–115

Emam KE, Benlarbi S, Goel N, Rai SN (2001) The confounding effect of class size on the validity of object-
oriented metrics. IEEE Trans Softw Eng 27(7):630–650

Eysenck HJ (1976) Case studies in behaviour therapy, Routledge, chap Introduction
Fernández-Ramil J, Lozano A, Wermelinger M, Capiluppi A (2008) Empirical studies of open source evolu-

tion. In: Software Evolution, Springer Verlag, chap 11, pp 263–288
Flyvbjerg B (2006) Five misunderstandings about case-study research. Qualitative Inquiry 12(2):219–245
Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: Improving the Design of Existing

Code. Addison-Wesley Professional
Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-oriented

software. Addison-Wesley
Godfrey MW, Tu Q (2000) Evolution in open source software: A case study. In: Int’l Conf. on Software

Maintenance, IEEE, Los Alamitos, CA, USA, pp 131–142
Hansen KM, Jónasson K, Neukirchen H (2009) An empirical study of open source software architectures’

effect on product quality. Tech. Rep. VHI-01-2009, Engineering Research Institute, Univ. of Iceland
Hou D (2007) Studying the evolution of the eclipse java editor. In: Proc. OOPSLA Workshop on Eclipse

Technology eXchange, ACM, pp 65–69
Johnson RE, Foote B (1988) Designing reusable classes. Journal of Object-Oriented Programming 1(2):22–

35
Juergens E, Deissenboeck F, Hummel B, Wagner S (2009) Do code clones matter? In: Proc. Int’l Conference

on Software Engineering, IEEE, pp 485–495
Kuhn TS (1987) What are scientific revolutions? In: The probabilistic revolution, vol 1, MIT Press, pp 7–22
Lakos J (1996) Large-Scale C++ Software Design. Addison-Wesley Professional
Lehman MM, Belady LA (1985) Program evolution: processes of software change. Academic Press
Lehman MM, Ramil JF, Wernick PD, Perry DE, Turski WM (1997) Metrics and laws of software evolution -

the nineties view. In: Proc. Symp. on Software Metrics, IEEE, pp 20–32
Lieberherr KJ, Holland I, Riel A (1988) Object-oriented programming: An objective sense of style. In: Proc.

int’l conf. on Object Oriented Programming, Systems, Languages, and Applications (OOPSLA), pp
323–334

Liskov B (1987) Data abstraction and hierarchy. In: Proc. int’l conf. on Object Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), ACM, pp 17–34

Marinescu R (2001) Detecting design flaws via metrics in object oriented systems. In: Proc. of the Technology
of Object-Oriented Languages and Systems (TOOLS), pp 173–182

Martin RC (1996) Granularity. C++ Report 8(10):57–62
Martin RC (1997) Large-scale stability. C++ Report 9(2):54–60
Medvidovic N, Dashofy EM, Taylor RN (2007) Moving architectural description from under the technology

lamppost. Information and Software Technology 49(1):12–31
Melton H (2006) On the usage and usefulness of OO design principles. In: Companion to the 21st OOPSLA,

ACM, pp 770–771
Melton H, Tempero E (2007) An empirical study of cycles among classes in Java. Empirical Software Engi-

neering 12(4):389–415
Mens T, Fernández-Ramil J, Degrandsart S (2008) The evolution of Eclipse. In: Proc. 24th Int’l Conf. on

Software Maintenance, IEEE, pp 386–395
Meyer B (1988) Object-Oriented Software Construction. Prentice Hall
Meyer B (1992) Applying ‘design by contract’. Computer 25(10):40–51
Moha N, Guéhéneuc YG, Leduc P (2006) Automatic generation of detection algorithms for design defects.

In: Proc. of the Int’l Conf. on Automated Software Engineering (ASE), IEEE, pp 297–300
Munro M (2005) Product metrics for automatic identification of “bad smel” design problems in Java source-

code. In: Proc. Int’l symp. on Software Metrics, IEEE, pp 15–24
Parnas DL (1972) On the criteria to be used in decomposing systems into modules. Commun ACM

15(12):1053–1058
Popper KR (1959) The Logic of Scientific Discovery. Hutchinson
Ratiu D, Ducasse S, Girba T, Marinescu R (2004) Using history information to improve design flaws detec-

tion. In: Proc. of the European Conf. on Software Maintenance and Reengineering (CSMR), IEEE, pp
223–232

Riel A (1996) Object-Oriented Design Heuristics. Addison-Wesley Professional
Simon HA (1962) The architecture of complexity. Proceedings of the American Philosophical Society

106(6):467–482

50

Stevens W, Myers G, Constantine L (1979) Structured design. In: Classics in software engineering, Yourdon
Press, pp 205–232

Tahvildari L, Kontogiannis K (2003) A metric-based approach to enhance design quality through meta-pattern
transformations. In: Proc. of the European Conf. on Software Maintenance and Reengineering (CSMR),
IEEE, pp 183–192

Tourwe T, Mens T (2003) Identifying refactoring opportunities using logic meta programming. In: Proc. of
the European Conf. on Software Maintenance and Reengineering (CSMR), IEEE, pp 91–100

Walter B, Pietrzak B (2005) Multi-criteria detection of bad smells in code with uta method. In: Extreme
Programming and Agile Processes in Software Engineering, Lecture Notes in Computer Science, pp
154–161

Wermelinger M, Yu Y (2008) Analyzing the evolution of Eclipse plugins. In: Proc. 5th Working Conf. on
Mining Software Repositories, ACM, pp 133–136

Wermelinger M, Yu Y (2011) Some issues in the ‘archaeology’ of software evolution. In: Generative and
Transformational Techniques in Software Engineering III, LNCS, vol 6491, Springer, pp 426–445

Wermelinger M, Yu Y, Lozano A (2008) Design principles in architectural evolution: a case study. In: Proc.
24th Int’l Conf. on Software Maintenance, IEEE, pp 396–405

Wermelinger M, Yu Y, Strohmaier M (2009) Using formal concept analysis to construct and visualise hierar-
chies of socio-technical relations. In: Proc. 31st Int’l Conf. on Software Eng., companion volume, IEEE,
pp 327–330

Wong K (1998) The Rigi User’s Manual, Version 5.4.4
Wu J, Spitzer C, Hassan A, Holt R (2004) Evolution spectrographs: visualizing punctuated change in software

evolution. In: Proc. 7th Intl. Workshop on Principles of Software Evolution, pp 57–66
Xing Z, Stroulia E (2004) Understanding class evolution in object-oriented software. In: Proc. Int’l Workshop

on Program Comprehension (IWPC), IEEE, pp 34–43

A Web companion

The ‘web companion’ to this paper is compressed folder, available from http://oro.open.ac.uk/28753,
containing all the figures of Section 4, and additional ones, in a larger and easier to read format
than in this paper. Once the folder has been downloaded and uncompressed, open the included
HTML file in a web browser. The file is fed by the Google spreadsheets mentioned in Section 3.3
and displays interactive visualizations in SVG format.

B Questionnaire

The following are the questions sent by e-mail to the developers mentioned in the acknowledgements.

Q1 We found that very few plugins, extension points and dependencies are deleted (compared to additions).
Is this an explicit aim of yours? If yes, is it to keep backwards compatibility of existing 3rd-party plugins,
or some other reason? If no, is there some other reason that might lead to few deletions?

Q2 We found that the number of plugins and their dependencies (as declared in the plugin.xml and mani-
fest.mf files) grows more than linearly and that the average size (number of classes) of a plugin has been
decreasing. Is this finer-grained modularization of Eclipse an explicit architectural design aim? Has the
rapidly growing number of plugins and dependencies caused any development problems or delays, e.g.
because it is harder for each developer to keep in their head an overview of the architecture?

Q3 We found that architectural changes (plugin and dependency additions and removals) were done (a)
mostly in early milestones, (b) some in the release candidates but freezing the architecture in the last
release candidates, and (c) hardly ever in service releases. Is that an explicit architectural change process
you follow?

Q4 We found only one cyclic static dependency during the whole history, existing from 2.1 until 2.1.3. The
cycle is between 3 plugins ui, ui.editors, ui.workbench.texteditor in the platform feature. The cycle
was broken in 3.0. Is the absence of cyclic dependencies an explicit aim of yours?

Q5 Release 3.0 had the biggest growth in number of dependencies; and Release 3.1 is the only one in
which that number decreased. Was that reduction of dependencies an explicit aim of release 3.1, i.e. an
architectural cleanup after 3.0, to reduce the complexity of the architecture?

Q6 We found the following about extension points.

51

– Most new extension points are added to existing plugins (rather than appearing with new plugins). Is
this to [..226]‘open up’ existing functionality? Why tend new plugins not to have extension points?

– Extension points are never deleted by themselves, they disappear when their plugin is deleted. Is
this to keep backward compatibility?

– Those extension points not used by the SDK itself more than duplicated in 3.4 but then were deleted
in 3.5. What is the reason for such big changes?

Q7 We clustered plugins according to whether they were created, deleted, or had their dependencies or ex-
tension points changed in the same release. Plugins closer together [..227]have more co-changes. We
found that on average plugins in different subsystems (org.eclipse.ui.*, org.eclipse.pde.*, etc.) are
closer together than those in different features, i.e. there are more co-changes across subsystem bound-
aries than across feature boundaries. This finding means that it might be slightly harder to implement
changes if developers are allocated to subsystems rather than to features. Could you briefly comment on
this and how work is allocated among the SDK team?

Q8 We also clustered plugins according to how many dependencies there are between them, and did so
release by release and saw a trend that the difference between intra-unit (subsystem or feature) and inter-
unit clustering is diminishing, i.e. plugin dependencies across subsystems and features tend to be on par
with dependencies within subsystems and features. This could be interpreted as a sign of architectural
decay or lack of cohesion, as coarse grained modules (subsystems and features) are becoming less the
containers of strongly dependent plugins. Could you comment on this? Have you experienced increasing
difficulties in coordinating architectural changes across sub-teams? Or are subsystems and features not
very important for architectural design, plugin modularisation, and work allocation?

Q9 We have found an architectural core (set of plugins and dependencies) that remains unchanged since 1.0.
Is this something you are aware and hence avoid making architectural changes there? Was it designed
from the start to be a stable core?

226removed: ’
227removed: hence

