32 research outputs found

    Extracting finite structure from infinite language

    Get PDF
    This paper presents a novel connectionist memory-rule based model capable of learning the finite-state properties of an input language from a set of positive examples. The model is based upon an unsupervised recurrent self-organizing map [T. McQueen, A. Hopgood, J. Tepper, T. Allen, A recurrent self-organizing map for temporal sequence processing, in: Proceedings of Fourth International Conference in Recent Advances in Soft Computing (RASC2002), Nottingham, 2002] with laterally interconnected neurons. A derivation of functionalequivalence theory [J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages and Computation, vol. 1, Addison-Wesley, Reading, MA, 1979] is used that allows the model to exploit similarities between the future context of previously memorized sequences and the future context of the current input sequence. This bottom-up learning algorithm binds functionally related neurons together to form states. Results show that the model is able to learn the Reber grammar [A. Cleeremans, D. Schreiber, J. McClelland, Finite state automata and simple recurrent networks, Neural Computation, 1 (1989) 372–381] perfectly from a randomly generated training set and to generalize to sequences beyond the length of those found in the training set

    Weissella halotolerans W22 combines arginine deiminase and ornithine decarboxylation pathways and converts arginine to putrescine

    Get PDF
    Aims: To demonstrate that the meat food strain Weissella halotolerans combines an ornithine decarboxylation pathway and an arginine deiminase (ADI) pathway and is able to produce putrescine, a biogenic amine. Evidence is shown that these two pathways produce a proton motive force (PMF). Methods and Results: Internal pH in W. halotolerans was measured with the sensitive probe 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein. Membrane potential was measured with the fluorescent probe 3,3'-dipropylthiocarbocyanine iodine. Arginine and ornithine transport studies were made under several conditions, using cells loaded or not loaded with the biogenic amine putrescine. ADI pathway caused an increase in Delta pH dependent on the activity of F(0)F(1)ATPase. Ornithine decarboxylation pathway generates both a Delta pH and a Delta Psi. Both these pathways lead to the generation of a PMF. Conclusions: Weissella halotolerans W22 combines an ADI pathway and an ornithine decarboxylation pathway, conducing to the production of the biogenic amine putrescine and of a PMF. Transport studies suggest the existence of a unique antiporter arginine/putrescine in this lactic acid bacteria strain. Significance and Impact of the Study: The coexistence of two different types of amino acid catabolic pathways, leading to the formation of a PMF, is shown for a Weissella strain for the first time. Moreover, a unique antiport arginine/putrescine is hypothesized to be present in this food strain

    Estimating Star Formation Rates from Infrared and Radio Luminosities: The Origin of the Radio-Infrared Correlation

    Get PDF
    I have assembled a diverse sample of galaxies from the literature with far-ultraviolet (FUV), optical, infrared (IR) and radio luminosities to explore the calibration of radio-derived and IR-derived star formation (SF) rates, and the origin of the radio-IR correlation. By comparing the 8-1000 micron IR, which samples dust-reprocessed starlight, with direct stellar FUV emission, I show that the IR traces most of the SF in luminous L* galaxies but traces only a small fraction of the SF in faint ~0.01 L* galaxies. If radio emission were a perfect SF rate indicator, this effect would cause easily detectable curvature in the radio-IR correlation. Yet, the radio-IR correlation is nearly linear. This implies that the radio flux from low-luminosity galaxies is substantially suppressed, compared to brighter galaxies. This is naturally interpreted in terms of a decreasing efficiency of non-thermal radio emission in faint galaxies. Thus, the linearity of the radio-IR correlation is a conspiracy: both indicators underestimate the SF rate at low luminosities. SF rate calibrations which take into account this effect are presented, along with estimates of the random and systematic error associated with their use

    Dengue: a continuing global threat.

    Get PDF
    Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each year, there are ∌50 million dengue infections and ∌500,000 individuals are hospitalized with dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated. Antiviral drugs and vaccines that are currently under development could also make an important contribution to dengue control in the future

    Dengue: a continuing global threat

    Full text link

    Canopy height explains species richness in the largest clade of Neotropical lianas

    No full text
    Aim Tall and structurally complex forests can provide ample habitat and niche space for climbing plants, supporting high liana species richness. We test to what extent canopy height (as a proxy of 3‐D habitat structure), climate and soil interact to determine species richness in the largest clade of Neotropical lianas. We expect that the effect of canopy height on species richness is higher for lianas from closed tropical rain forests compared to riparian and savanna habitats. Location Neotropics. Time period Present. Major taxa studied Tribe Bignonieae (Bignoniaceae). Methods We used structural equation models to evaluate direct and indirect effects of canopy height, climate (temperature, precipitation and precipitation seasonality), and soil (cation exchange capacity and soil types) on overall Bignonieae species richness (339 liana species), as well as on species richness of lianas from forest, riparian and savanna habitats, respectively. We further performed multiple regression models with Moran's eigenvector maps to account for spatial autocorrelation. Results Canopy height was a key driver of liana species richness, in addition to climate and soil. Species richness of forest lianas showed a strong positive relationship with canopy height whereas the relationship was less pronounced for riparian species. Richness of savanna species decreased with increasing canopy height. Climate also explained a substantial proportion of variation in liana species richness whereas soil variables showed little explanatory power. Main conclusions The relationship between canopy height and liana species richness differs among habitats. While forest and riparian lianas benefit from tall and complex habitats that provide physical support to reach the canopy to escape low light availability in the understorey, high light availability in open habitats and an increased risk of embolism of conductive vessels for lianas with long stems living in areas with high seasonality might explain the inverse relationship between species richness and canopy height in savannas
    corecore