29 research outputs found

    Novel therapeutic strategies targeting HIV integrase

    Get PDF
    Integration of the viral genome into host cell chromatin is a pivotal and unique step in the replication cycle of retroviruses, including HIV. Inhibiting HIV replication by specifically blocking the viral integrase enzyme that mediates this step is an obvious and attractive therapeutic strategy. After concerted efforts, the first viable integrase inhibitors were developed in the early 2000s, ultimately leading to the clinical licensure of the first integrase strand transfer inhibitor, raltegravir. Similarly structured compounds and derivative second generation integrase strand transfer inhibitors, such as elvitegravir and dolutegravir, are now in various stages of clinical development. Furthermore, other mechanisms aimed at the inhibition of viral integration are being explored in numerous preclinical studies, which include inhibition of 3' processing and chromatin targeting. The development of new clinically useful compounds will be aided by the characterization of the retroviral intasome crystal structure. This review considers the history of the clinical development of HIV integrase inhibitors, the development of antiviral drug resistance and the need for new antiviral compounds

    Subtype-associated differences in HIV-1 reverse transcription affect the viral replication

    Get PDF
    Background: The impact of the products of the pol gene, specifically, reverse transcriptase (RT) on HIV-1 replication, evolution, and acquisition of drug resistance has been thoroughly characterized for subtype B. For subtype C, which accounts of almost 60% of HIV cases worldwide, much less is known. It has been reported that subtype C HIV-1 isolates have a lower replication capacity than B; however, the basis of these differences remains unclear. Results: We analyzed the impact of the pol gene products from HIV-1 B and C subtypes on the maturation of HIV virions, accumulation of reverse transcription products, integration of viral DNA, frequency of point mutations in provirus and overall viral replication. Recombinant HIV-1 viruses of B and C subtypes comprising the pol fragments encoding protease, integrase and either the whole RT or a chimeric RT from different isolates of the C and B subtypes, were used for infection of cells expressing CXCR4 or CCR5 co-receptors. The viruses carrying different fragments of pol from the isolates of B and C subtypes did not reveal differences in Gag and GagPol processing and viral RNA incorporation into the virions. However, the presence of the whole RT from subtype C, or the chimeric RT containing either the polymerase or the connection and RNase H domains from C isolates, caused significantly slower viral replication regardless of B or C viral backbone. Subtype C RT carrying viruses displayed lower levels of accumulation of strong-stop cDNA in permeabilized virions during endogenous reverse transcription, and decreased accumulation of both strong-stop and positive strand reverse transcription products in infected cells and in isolated reverse transcription complexes. This decreased accumulation correlated with lower levels of viral DNA integration in cells infected with viruses carrying the whole RT or RT domains from subtype C isolates. The single viral genome assay analysis did not reveal significant differences in the frequency of point mutations between the RT from B or C subtypes. Conclusions: These data suggest that the whole RT as well as distinct polymerase and connection-RNase H domains from subtype C HIV-1 confer a lower level of accumulation of reverse transcripts in the virions and reverse transcription complexes as compared to subtype B, resulting in a lower overall level of virus replication

    The role of unintegrated DNA in HIV infection

    Get PDF
    Integration of the reverse transcribed viral genome into host chromatin is the hallmark of retroviral replication. Yet, during natural HIV infection, various unintegrated viral DNA forms exist in abundance. Though linear viral cDNA is the precursor to an integrated provirus, increasing evidence suggests that transcription and translation of unintegrated DNAs prior to integration may aid productive infection through the expression of early viral genes. Additionally, unintegrated DNA has the capacity to result in preintegration latency, or to be rescued and yield productive infection and so unintegrated DNA, in some circumstances, may be considered to be a viral reservoir. Recently, there has been interest in further defining the role and function of unintegrated viral DNAs, in part because the use of anti-HIV integrase inhibitors leads to an abundance of unintegrated DNA, but also because of the potential use of non-integrating lentiviral vectors in gene therapy and vaccines. There is now increased understanding that unintegrated viral DNA can either arise from, or be degraded through, interactions with host DNA repair enzymes that may represent a form of host antiviral defence. This review focuses on the role of unintegrated DNA in HIV infection and additionally considers the potential implications for antiviral therapy

    Group A Human Rotavirus Genomics: Evidence that Gene Constellations Are Influenced by Viral Protein Interactions▿ †

    No full text
    Group A human rotaviruses (HRVs) are the major cause of severe viral gastroenteritis in infants and young children. To gain insight into the level of genetic variation among HRVs, we determined the genome sequences for 10 strains belonging to different VP7 serotypes (G types). The HRVs chosen for this study, D, DS-1, P, ST3, IAL28, Se584, 69M, WI61, A64, and L26, were isolated from infected persons and adapted to cell culture to use as serotype references. Our sequencing results revealed that most of the individual proteins from each HRV belong to one of three genotypes (1, 2, or 3) based on their similarities to proteins of genogroup strains (Wa, DS-1, or AU-1, respectively). Strains D, P, ST3, IAL28, and WI61 encode genotype 1 (Wa-like) proteins, whereas strains DS-1 and 69M encode genotype 2 (DS-1-like) proteins. Of the 10 HRVs sequenced, 3 of them (Se584, A64, and L26) encode proteins belonging to more than one genotype, indicating that they are intergenogroup reassortants. We used amino acid sequence alignments to identify residues that distinguish proteins belonging to HRV genotype 1, 2, or 3. These genotype-specific changes cluster in definitive regions within each viral protein, many of which are sites of known protein-protein interactions. For the intermediate viral capsid protein (VP6), the changes map onto the atomic structure at the VP2-VP6, VP4-VP6, and VP7-VP6 interfaces. The results of this study provide evidence that group A HRV gene constellations exist and may be influenced by interactions among viral proteins during replication

    Dialysis Purification of Integrase-DNA Complexes Provides High-Resolution Atomic Force Microscopy Images: Dimeric Recombinant HIV-1 Integrase Binding and Specific Looping on DNA.

    Get PDF
    It remains difficult to obtain high-resolution atomic force microscopy images of HIV-1 integrase bound to DNA in a dimeric or tetrameric fashion. We therefore constructed specific target DNAs to assess HIV-1 integrase binding and purified the complex by dialysis prior to analysis. Our resulting atomic force microscopy analyses indicated precise size of binding human immunodeficiency virus type 1 (HIV-1) recombinant integrase in a tetrameric manner, inducing formation of a loop-like or figure-eight-like secondary structure in the target DNA. Our findings regarding the target DNA secondary structure provide new insights into the intermediate states of retroviral integration

    Prevalence of HIV-1 integrase mutations related to resistance to dolutegravir in raltegravir na\uefve and pretreated patients

    No full text
    The prevalence of HIV-1 integrase mutations related to resistance to the next-generation integrase inhibitor (INI), dolutegravir (DTG), was assessed in 440 INI-na\uefve subjects and in 120 patients failing a raltegravir (RTG)-containing regimen. Of the mutations selected by DTG in vitro, S153FY was not detected in any isolate while L101I and T124A were highly prevalent in both groups and significantly associated with non-B subtype. RTG-selected double and triple mutants, mostly the G140S/Q148H variant, were detected in only 32 (26.7%) RTG-treated patients. As L101I and T124A do not appear to exert any major effect in vivo and double and triple mutants resistant to DTG are infrequently selected by RTG, DTG can be effectively used in INI-na\uefve patients and may retain activity in many patients failing RTG
    corecore