251 research outputs found
Self-diffusion and Cooperative Diffusion in Semidilute Polymer Solutions as measured by Fluorescence Correlation Spectroscopy
We present a comprehensive investigation of polymer diffusion in the
semidilute regime by fluorescence correlation spectroscopy (FCS) and dynamic
light scattering (DLS). Using single-labeled polystyrene chains, FCS leads to
the self-diffusion coefficient while DLS gives the cooperative diffusion
coefficient for exactly the same molecular weights and concentrations. Using
FCS we observe a new fast mode in the semidilute entangled concentration regime
beyond the slower mode which is due to self-diffusion. Comparison of FCS data
with data obtained by DLS on the same polymers shows that the second mode
observed in FCS is identical to the cooperative diffusion coefficient measured
with DLS. An in-depth analysis and a comparison with current theoretical models
demonstrates that the new cooperative mode observed in FCS is due to the
effective long-range interaction of the chains through the transient
entanglement network
Quantifying the Reversible Association of Thermosensitive Nanoparticles
Under many conditions, biomolecules and nanoparticles associate by means of
attractive bonds, due to hydrophobic attraction. Extracting the microscopic
association or dissociation rates from experimental data is complicated by the
dissociation events and by the sensitivity of the binding force to temperature
(T). Here we introduce a theoretical model that combined with light-scattering
experiments allows us to quantify these rates and the reversible binding energy
as a function of T. We apply this method to the reversible aggregation of
thermoresponsive polystyrene/poly(N-isopropylacrylamide) core-shell
nanoparticles, as a model system for biomolecules. We find that the binding
energy changes sharply with T, and relate this remarkable switchable behavior
to the hydrophobic-hydrophilic transition of the thermosensitive nanoparticles
Thermal Degradation of Adsorbed Bottle-Brush Macromolecules: Molecular Dynamics Simulation
The scission kinetics of bottle-brush molecules in solution and on an
adhesive substrate is modeled by means of Molecular Dynamics simulation with
Langevin thermostat. Our macromolecules comprise a long flexible polymer
backbone with segments, consisting of breakable bonds, along with two side
chains of length , tethered to each segment of the backbone. In agreement
with recent experiments and theoretical predictions, we find that bond cleavage
is significantly enhanced on a strongly attractive substrate even though the
chemical nature of the bonds remains thereby unchanged.
We find that the mean bond life time decreases upon adsorption by
more than an order of magnitude even for brush molecules with comparatively
short side chains $N=1 \div 4$. The distribution of scission probability along
the bonds of the backbone is found to be rather sensitive regarding the
interplay between length and grafting density of side chains. The life time
declines with growing contour length as ,
and with side chain length as . The probability
distribution of fragment lengths at different times agrees well with
experimental observations. The variation of the mean length of the
fragments with elapsed time confirms the notion of the thermal degradation
process as a first order reaction.Comment: 15 pages, 7 figure
Charge-induced conformational changes of dendrimers
We study the effect of chargeable monomers on the conformation of dendrimers
of low generation by computer simulations, employing bare Coulomb interactions.
The presence of the latter leads to an increase in size of the dendrimer due to
a combined effect of electrostatic repulsion and the presence of counterions
within the dendrimer, and also enhances a shell-like structure for the monomers
of different generations. In the resulting structures the bond-length between
monomers, especially near the center, will increase to facilitate a more
effective usage of space in the outer-regions of the dendrimer.Comment: 7 pages, 12 figure
Soft Interaction Between Dissolved Dendrimers: Theory and Experiment
Using small-angle neutron scattering and liquid integral equation theory, we
relate the structure factor of flexible dendrimers of 4th generation to their
average shape. The shape is measured as a radial density profile of monomers
belonging to a single dendrimer. From that, we derive an effective interaction
of Gaussian form between pairs of dendrimers and compute the structure factor
using the hypernetted chain approximation. Excellent agreement with the
corresponding experimental results is obtained, without the use of adjustable
parameters. The present analysis thus strongly supports the previous finding
that flexible dendrimers of low generation present fluctuating structures akin
to star polymers.Comment: 20 pages, 4 figures, submitted to Macromolecules on July 24, 200
Highly Dispersible Hexagonal Carbon MoS2 Carbon Nanoplates with Hollow Sandwich Structures for Supercapacitors
MoS2, a typical layered transition metal dichalcogenide is promising as an electrode material in supercapacitors. However, its low electrical conductivity could lead to limited capacitance when applied in electrochemical devices. Here, a new nanostructure made of hollow carbon MoS2 carbon was successfully synthesized by a L cysteine assisted hydrothermal method using gibbsite as a template and polydopamine as a carbon precursor. After calcination and etching of the gibbsite template, uniform hollow platelets, which are made of a sandwich like assembly of the partial graphitic carbon and the two dimensional layered MoS2 flakes, were obtained. The platelets showed excellent dispersibility and stability in water and good electrical conductivity due to the carbon provided by the calcination of the polydopamine coatings. The hollow nanoplate morphology of the material provided a high specific surface area of 543 m2 g, a total pore volume of 0.677 cm3 g and fairly small mesopores 5.3 nm . The material was applied in a symmetric supercapacitor and exhibited a specific capacitance of 248 F g 0.12 F cm2 at a constant current density of 0.1 A g, suggesting that the hollow carbon MoS2 carbon nanoplates are promising candidate materials for supercapacitor
Phase Behavior of Polyelectrolyte Block Copolymers in Mixed Solvents
We have studied the phase behavior of the poly(n-butyl
acrylate)-b-poly(acrylic acid) block copolymer in a mixture of two miscible
solvents, water and tetrahydrofuran (THF). The techniques used to examine the
different polymers, structures and phases formed in mixed solvents were static
and dynamic light scattering, small-angle neutron scattering, nuclear magnetic
resonance and fluorescence microscopy. By lowering the water/THF mixing ratio
X, the sequence unimers, micron-sized droplets, polymeric micelles was
observed. The transition between unimers and the micron-sized droplets occurred
at X = 0.75, whereas the microstructuration into core-shell polymeric micelles
was effective below X = 0.4. At intermediate mixing ratios, a coexistence
between the micron-sized droplets and the polymeric micelles was observed.
Combining the different aforementioned techniques, it was concluded that the
droplet dispersion resulted from a solvent partitioning that was induced by the
hydrophobic blocks. Comparison of poly(n-butyl acrylate) homopolymers and
poly(n-butyl acrylate)-b-poly(acrylic acid) block copolymers suggested that the
droplets were rich in THF and concentrated in copolymers and that they were
stabilized by the hydrophilic poly(acrylic acid) moieties.Comment: 11 pages, 12 figures, to appear in Macromolecule
Balancing economic and ecological functions in smallholder and industrial oil palm plantations
The expansion of the oil palm industry in Indonesia has improved livelihoods in rural communities, but comes at the cost of biodiversity and ecosystem degradation. Here, we investigated ways to balance ecological and economic outcomes of oil palm cultivation. We compared a wide range of production systems, including smallholder plantations, industrialized company estates, estates with improved agronomic management, and estates with native tree enrichment. Across all management types, we assessed multiple indicators of biodiversity, ecosystem functions, management, and landscape structure to identify factors that facilitate economic-ecological win-wins, using palm yields as measure of economic performance. Although, we found that yields in industrialized estates were, on average, twice as high as those in smallholder plantations, ecological indicators displayed substantial variability across systems, regardless of yield variations, highlighting potential for economic-ecological win-wins. Reducing management intensity (e.g., mechanical weeding instead of herbicide application) did not lower yields but improved ecological outcomes at moderate costs, making it a potential measure for balancing economic and ecological demands. Additionally, maintaining forest cover in the landscape generally enhanced local biodiversity and ecosystem functioning within plantations. Enriching plantations with native trees is also a promising strategy to increase ecological value without reducing productivity. Overall, we recommend closing yield gaps in smallholder cultivation through careful intensification, whereas conventional plantations could reduce management intensity without sacrificing yield. Our study highlights various pathways to reconcile the economics and ecology of palm oil production and identifies management practices for a more sustainable future of oil palm cultivation.</p
Coupling of Rotational Motion with Shape Fluctuations of Core-shell Microgels Having Tunable Softness
The influence of shape fluctuations on deformable thermosensitive microgels
in aqueous solution is investigated by dynamic light scattering (DLS) and
depolarized dynamic light scattering (DDLS). The systems under study consist of
a solid core of polystyrene and a thermosensitive shell of cross-linked
poly(N-isopropylacrylamide) (PNIPA) without and with embedded palladium
nanoparticles. PNIPA is soluble in water, but has a lower critical solution
temperature at 32 C (LCST). Below the LCST the PNIPA shell is swollen. Here we
find that besides translational and rotational diffusion, the particles exhibit
additional dynamics resulting from shape fluctuations. This leads to a
pronounced apparent increase of the rotational diffusion coefficient. Above the
transition temperature the shell collapses and provides a rather tight envelope
of the core. In this state the dynamics of the shell is frozen and the
core-shell particles behave like hard spheres. A simple physical model is
presented to capture and explain the essentials of the coupling of rotational
motion and shape fluctuations.Comment: 9 pages, 7 figure
- âŠ