87,114 research outputs found

    A performance measure for manual control systems

    Get PDF
    A new performance measure is introduced for multivariable closed loop experiments with a human operator. The essential feature of the phase margin performance measure (PMPM) is that the performance of each control loop can be determined independently, with prescribed disturbance and error levels. A variable filter parameter is used as the PMPM within the loop and it assures a high workload at the same time. There is a straightforward relationship between the PMPM and the inner loop feedback augmentation that can be utilized in trade-off studies. An adjustment scheme that seeks the PMPM automatically is described as employed in a single loop control task. This task applies directly to the experimental study of displays for helicopters and VTOL aircraft

    Phonon anomalies in pure and underdoped R{1-x}K{x}Fe{2}As{2} (R = Ba, Sr) investigated by Raman light scattering

    Full text link
    We present a detailed temperature dependent Raman light scattering study of optical phonons in Ba{1-x}K{x}Fe{2}As{2} (x ~ 0.28, superconducting Tc ~ 29 K), Sr{1-x}K{x}Fe{2}As{2} (x ~ 0.15, Tc ~ 29 K) and non-superconducting BaFe{2}As{2} single crystals. In all samples we observe a strong continuous narrowing of the Raman-active Fe and As vibrations upon cooling below the spin-density-wave transition Ts. We attribute this effect to the opening of the spin-density-wave gap. The electron-phonon linewidths inferred from these data greatly exceed the predictions of ab-initio density functional calculations without spin polarization, which may imply that local magnetic moments survive well above Ts. A first-order structural transition accompanying the spin-density-wave transition induces discontinuous jumps in the phonon frequencies. These anomalies are increasingly suppressed for higher potassium concentrations. We also observe subtle phonon anomalies at the superconducting transition temperature Tc, with a behavior qualitatively similar to that in the cuprate superconductors.Comment: 5 pages, 6 figures, accepted versio

    Shintani functions, real spherical manifolds, and symmetry breaking operators

    Full text link
    For a pair of reductive groups G⊃G′G \supset G', we prove a geometric criterion for the space Sh(λ,ν)Sh(\lambda, \nu) of Shintani functions to be finite-dimensional in the Archimedean case. This criterion leads us to a complete classification of the symmetric pairs (G,G′)(G,G') having finite-dimensional Shintani spaces. A geometric criterion for uniform boundedness of dimSh(λ,ν)dim Sh(\lambda, \nu) is also obtained. Furthermore, we prove that symmetry breaking operators of the restriction of smooth admissible representations yield Shintani functions of moderate growth, of which the dimension is determined for (G,G′)=(O(n+1,1),O(n,1))(G, G') = (O(n+1,1), O(n,1)).Comment: to appear in Progress in Mathematics, Birkhause

    Creation of collective many-body states and single photons from two-dimensional Rydberg lattice gases

    Full text link
    The creation of collective many-body quantum states from a two-dimensional lattice gas of atoms is studied. Our approach relies on the van-der-Waals interaction that is present between alkali metal atoms when laser excited to high-lying Rydberg s-states. We focus on a regime in which the laser driving is strong compared to the interaction between Rydberg atoms. Here energetically low-lying many-particle states can be calculated approximately from a quadratic Hamiltonian. The potential usefulness of these states as a resource for the creation of deterministic single-photon sources is illustrated. The properties of these photon states are determined from the interplay between the particular geometry of the lattice and the interatomic spacing.Comment: 12 pages, 8 figure
    • …
    corecore