research

Shintani functions, real spherical manifolds, and symmetry breaking operators

Abstract

For a pair of reductive groups GGG \supset G', we prove a geometric criterion for the space Sh(λ,ν)Sh(\lambda, \nu) of Shintani functions to be finite-dimensional in the Archimedean case. This criterion leads us to a complete classification of the symmetric pairs (G,G)(G,G') having finite-dimensional Shintani spaces. A geometric criterion for uniform boundedness of dimSh(λ,ν)dim Sh(\lambda, \nu) is also obtained. Furthermore, we prove that symmetry breaking operators of the restriction of smooth admissible representations yield Shintani functions of moderate growth, of which the dimension is determined for (G,G)=(O(n+1,1),O(n,1))(G, G') = (O(n+1,1), O(n,1)).Comment: to appear in Progress in Mathematics, Birkhause

    Similar works

    Full text

    thumbnail-image

    Available Versions