13,264 research outputs found

    Convex Independence in Permutation Graphs

    Full text link
    A set C of vertices of a graph is P_3-convex if every vertex outside C has at most one neighbor in C. The convex hull \sigma(A) of a set A is the smallest P_3-convex set that contains A. A set M is convexly independent if for every vertex x \in M, x \notin \sigma(M-x). We show that the maximal number of vertices that a convexly independent set in a permutation graph can have, can be computed in polynomial time

    Top Management Team Heterogeneity and SME Export Performance: Investigating the Role of Environmental Uncertainty

    Get PDF
    Research has generally found that firm competing in high uncertainty environments gain advantages from having diverse (heterogeneous) management teams (TMTs). Employing a national survey of 70 small- and medium-sized enterprises (SMEs), the present study examined whether TM T heterogeneity in functional background, international work experience, and foreign language proficiency had a stronger relationship with  export performance for firms competing in high than those competing in low uncertainty environments. Results were generally weak when market and industry factors contributing to uncertainty were examined  separately;  however,  additional  analysis  showed  that  the hypothesized relationship did exist when uncertainty was measured employing both factors simultaneously

    Lightweight XML-based query, integration and visualization of distributed, multimodality brain imaging data

    Get PDF
    A need of many neuroimaging researchers is to integrate multimodality brain data that may be stored in separate databases. To address this need we have developed a framework that provides a uniform XML-based query interface across multiple online data sources. The development of this framework is driven by the need to integrate neurosurgical and neuroimaging data related to language. The data sources for the language studies are 1) a web-accessible relational database of neurosurgical cortical stimulation mapping data (CSM) that includes patient-specific 3-D coordinates of each stimulation site mapped to an MRI reconstruction of the patient brain surface; and 2) an XML database of fMRI and structural MRI data and analysis results, created automatically by a batch program we have embedded in SPM. To make these sources available for querying each is wrapped as an XML view embedded in a web service. A top level web application accepts distributed XQueries over the sources, which are dispatched to the underlying web services. Returned results can be displayed as XML, HTML, CSV (Excel format), a 2-D schematic of a parcellated brain, or a 3-D brain visualization. In the latter case the CSM patient-specific coordinates returned by the query are sent to a transformation web-service for conversion to normalized space, after which they are sent to our 3-D visualization program MindSeer, which is accessed via Java WebStart through a generated link. The anatomical distribution of pooled CSM sites can then be visualized using various surfaces derived from brain atlases. As this framework is further developed and generalized we believe it will have appeal for researchers who wish to query, integrate and visualize results across their own databases as well as those of collaborators

    Applying Compactness Constraints to Seismic Traveltime Tomography

    Get PDF
    Tomographic imaging problems are typically ill-posed and often require the use of regularization techniques to guarantee a stable solution. Minimization of a weighted norm of model length is one commonly used secondary constraint. Tikhonov methods exploit low-order differential operators to select for solutions that are small, flat, or smooth in one or more dimensions. This class of regularizing functionals may not always be appropriate, particularly in cases where the anomaly being imaged is generated by a non-smooth spatial process. Timelapse imaging of flow-induced seismic velocity anomalies is one such case; flow features are often characterized by spatial compactness or connectivity. We develop a traveltime tomography algorithm which selects for compact solutions through application of model-space iteratively reweighted least squares. Our technique is an adaptation of minimum support regularization methods previously developed within the potential theory community. We emphasize the application of compactness constraints to timelapse datasets differenced in the data domain, a process which allows recovery of compact perturbations in model properties. We test our inversion algorithm on a simple synthetic dataset generated using a velocity model with several localized velocity anomalies. We then demonstrate the efficacy of the algorithm on a CO2 sequestration monitoring dataset acquired at the Frio pilot site. In both cases, the addition of compactness constraints improves image quality by reducing spatial smearing due to limited angular aperture in the acquisition geometry.Toksoz, M. NafiMassachusetts Institute of Technology. Earth Resources Laborator

    Computation of 3D Frequency-Domain Waveform Kernals for c(x,y,z) Media

    Get PDF
    Seismic tomography, as typically practiced on both the exploration, crustal, and global scales, considers only the arrival times of selected sets of phases and relies primarily on WKBJ theory during inversion. Since the mid 1980’s, researchers have explored, largely on a theoretical level, the possibility of inverting the entire seismic record. Due to the ongoing advances in CPU performance, full waveform inversion is finally becoming feasible on select problems with promising results emerging from frequency-domain methods. However, frequency-domain techniques using sparse direct solvers are currently constrained by memory limitations in 3D where they exhibit a O(n4) worst-case bound on memory usage. We sidestep this limitation by using a hybrid approach, calculating frequency domain Green’s functions for the scalar wave equation by driving a high-order, time-domain, finite-difference (FDTD) code to steady state using a periodic source. The frequency-domain response is extracted using the phase sensitive detection (PSD) method recently developed by Nihei and Li (2006). The resulting algorithm has an O(n3) memory footprint and is amenable to parallelization in the space, shot, or frequency domains. We demonstrate this approach by generating waveform inversion kernels for fully c(x,y,z) models. Our test examples include a realistic VSP experiment using the geometry and velocity models obtained from a site in Western Wyoming, and a deep crustal reflection/refraction profile based on the LARSE II geometry and the SCEC community velocity model. We believe that our 3D solutions to the scalar Helmholtz equation, for models with upwards of 100 million degrees of freedom, are the largest examples documented in the open geophysical literature. Such results suggest that iterative 3D waveform inversion is an achievable goal in the near future.Shell GameChangerMassachusetts Institute of Technology. Earth Resources Laborator

    Independent nurse medication provision: A mixed method study assessing impact on patients' experience, processes, and costs in sexual health clinics

    Get PDF
    BACKGROUND: Local services in the United Kingdom National Health Service enable autonomous provision of medication by nurses, supporting individual nurses to gain prescribing qualifications or by introducing local patient group directions. AIM: To compare nurse prescribing and patient group directions about clinic processes, patients' experiences, and costs from the perspectives of providers, nurses, and patients. DESIGN: Mixed methods, comparative case study in five urban sexual health services in the United Kingdom. METHODS: Data were collected from nurse prescribers, patient group direction users and their patients July 2015 to December 2016. Nurse questionnaires explored training (funding and methods). Nurses recorded consultation durations and support from other professionals in clinical diaries. Patient notes were reviewed to explore medication provision, appropriateness and safety; errors were judged by an expert panel. Patients completed satisfaction questionnaires about consultations and information about medications. RESULTS: Twenty-eight nurse prescribers and 67 patient group directions users took part; records of 1682 consultations were reviewed, with 1357 medications prescribed and 98.5% therapeutically appropriate. Most medication decisions were deemed safe (96.0% nurse prescribers, 98.7% patient group directions, Fisher's Exact Test p = .55). Errors were predominantly minor (55.6% nurse prescribers, 62.4% patient group directions) and related to documentation omissions (78.0%); no patients were harmed. Consultation durations and unplanned re-consultations were similar for both groups. Nurse prescribers sought assistance from colleagues less frequently (chi-squared = 46.748, df = 1, p 96%). CONCLUSIONS: Nurse medication provision by both nurse prescribers and patient group direction users is safe and associated with high patient satisfaction; effects on clinic processes and costs are similar. Undertaking the prescribing qualification involves independent study but may bring longer-term career progression to nurses

    Octet Baryon Magnetic Moments in the Chiral Quark Model with Configuration Mixing

    Get PDF
    The Coleman-Glashow sum-rule for magnetic moments is always fulfilled in the chiral quark model, independently of SU(3) symmetry breaking. This is due to the structure of the wave functions, coming from the non-relativistic quark model. Experimentally, the Coleman-Glashow sum-rule is violated by about ten standard deviations. To overcome this problem, two models of wave functions with configuration mixing are studied. One of these models violates the Coleman-Glashow sum-rule to the right degree and also reproduces the octet baryon magnetic moments rather accurately.Comment: 22 pages, RevTe

    Radio-frequency discharges in Oxygen. Part 1: Modeling

    Full text link
    In this series of three papers we present results from a combined experimental and theoretical effort to quantitatively describe capacitively coupled radio-frequency discharges in oxygen. The particle-in-cell Monte-Carlo model on which the theoretical description is based will be described in the present paper. It treats space charge fields and transport processes on an equal footing with the most important plasma-chemical reactions. For given external voltage and pressure, the model determines the electric potential within the discharge and the distribution functions for electrons, negatively charged atomic oxygen, and positively charged molecular oxygen. Previously used scattering and reaction cross section data are critically assessed and in some cases modified. To validate our model, we compare the densities in the bulk of the discharge with experimental data and find good agreement, indicating that essential aspects of an oxygen discharge are captured.Comment: 11 pages, 10 figure

    The continuity of the inversion and the structure of maximal subgroups in countably compact topological semigroups

    Full text link
    In this paper we search for conditions on a countably compact (pseudo-compact) topological semigroup under which: (i) each maximal subgroup H(e)H(e) in SS is a (closed) topological subgroup in SS; (ii) the Clifford part H(S)H(S)(i.e. the union of all maximal subgroups) of the semigroup SS is a closed subset in SS; (iii) the inversion inv ⁣:H(S)H(S)\operatorname{inv}\colon H(S)\to H(S) is continuous; and (iv) the projection π ⁣:H(S)E(S)\pi\colon H(S)\to E(S), π ⁣:xxx1\pi\colon x\longmapsto xx^{-1}, onto the subset of idempotents E(S)E(S) of SS, is continuous
    corecore