14,337 research outputs found

    Low-Temperature Orientation Dependence of Step Stiffness on {111} Surfaces

    Get PDF
    For hexagonal nets, descriptive of {111} fcc surfaces, we derive from combinatoric arguments a simple, low-temperature formula for the orientation dependence of the surface step line tension and stiffness, as well as the leading correction, based on the Ising model with nearest-neighbor (NN) interactions. Our formula agrees well with experimental data for both Ag and Cu{111} surfaces, indicating that NN-interactions alone can account for the data in these cases (in contrast to results for Cu{001}). Experimentally significant corollaries of the low-temperature derivation show that the step line tension cannot be extracted from the stiffness and that with plausible assumptions the low-temperature stiffness should have 6-fold symmetry, in contrast to the 3-fold symmetry of the crystal shape. We examine Zia's exact implicit solution in detail, using numerical methods for general orientations and deriving many analytic results including explicit solutions in the two high-symmetry directions. From these exact results we rederive our simple result and explore subtle behavior near close-packed directions. To account for the 3-fold symmetry in a lattice gas model, we invoke a novel orientation-dependent trio interaction and examine its consequences.Comment: 11 pages, 8 figure

    The axonally secreted protein axonin-1 is a potent substratum for neurite growth

    Get PDF
    Axonin-1 is a neuronal glycoprotein occurring both as a membrane-bound and a secreted form. Membrane-bound axonin-1 is predominantly located in membranes of developing nerve fiber tracts and has recently been characterized as a cell adhesion molecule; the soluble form is secreted from axons and accumulates in the cerebrospinal fluid and the vitreous fluid of the eye. In the present study, we addressed the question as to whether secreted axonin-1 was released in a functionally competent form and we found that it strongly promotes neurite outgrowth when presented to neurons as an immobilized substratum. Neurite lengths elaborated by embryonic dorsal root ganglia neurons on axonin-1 were similar to those on the established neurite-promoting substrata L1 and laminin. Fab fragments of axonin-1 antibodies completely inhibited neurite growth on axonin-1, but not on other substrata. In soluble form, axonin-1 had an anti-adhesive effect, as revealed by perturbation of neurite fasciculation. In view of their structural similarity, we conclude that secreted and membrane-bound axonin-1 interact with the same growth-promoting neuritic receptor. The fact that secreted axonin-1 is functionally active, together with our previous findings that it is secreted from an internal cellular pool, suggests a functional dualism between membrane-bound and secreted axonin-1 at the site of secretion, which is most likely the growth cone. The secretion of adhesion molecules could represent a powerful and rapidly acting regulatory element of growth cone-neurite interactions in the control of neurite elongation, pathway selection, and possibly target recognition

    Results of the US contribution to the joint US/USSR Bering Sea experiment

    Get PDF
    The atmospheric circulation which occurred during the Bering Sea Experiment, 15 February to 10 March 1973, in and around the experiment area is analyzed and related to the macroscale morphology and dynamics of the sea ice cover. The ice cover was very complex in structure, being made up of five ice types, and underwent strong dynamic activity. Synoptic analyses show that an optimum variety of weather situations occurred during the experiment: an initial strong anticyclonic period (6 days), followed by a period of strong cyclonic activity (6 days), followed by weak anticyclonic activity (3 days), and finally a period of weak cyclonic activity (4 days). The data of the mesoscale test areas observed on the four sea ice option flights, and ship weather, and drift data give a detailed description of mesoscale ice dynamics which correlates well with the macroscale view: anticyclonic activity advects the ice southward with strong ice divergence and a regular lead and polynya pattern; cyclonic activity advects the ice northward with ice convergence, or slight divergence, and a random lead and polynya pattern

    Social Effects in Science: Modelling Agents for a Better Scientific Practice

    Full text link
    Science is a fundamental human activity and we trust its results because it has several error-correcting mechanisms. Its is subject to experimental tests that are replicated by independent parts. Given the huge amount of information available, scientists have to rely on the reports of others. This makes it possible for social effects to influence the scientific community. Here, an Opinion Dynamics agent model is proposed to describe this situation. The influence of Nature through experiments is described as an external field that acts on the experimental agents. We will see that the retirement of old scientists can be fundamental in the acceptance of a new theory. We will also investigate the interplay between social influence and observations. This will allow us to gain insight in the problem of when social effects can have negligible effects in the conclusions of a scientific community and when we should worry about them.Comment: 14 pages, 5 figure

    Оптимизация аппаратурного оформления процесса дегидрирования высших алканов с использованием метода математического моделирования

    Get PDF
    Предложен новый способ повышения эффективности работы реакторного блока дегидрирования парафинов с использованием математической модели, учитывающей взаимное влияние процессов, протекающих в аппаратах химико-технологической системы. Проведена численная оценка влияния химического состава сырья, технологических режимов и степени дезактивации катализатора на эффективность работы аппаратов химико-технологической схемы промышленной установки дегидрирования

    Coherent Control for a Two-level System Coupled to Phonons

    Full text link
    The interband polarizations induced by two phase-locked pulses in a semiconductor show strong interference effects depending on the time tau_1 separating the pulses. The four-wave mixing signal diffracted from a third pulse delayed by tau is coherently controlled by tuning tau_1. The four-wave mixing response is evaluated exactly for a two-level system coupled to a single LO phonon. In the weak coupling regime it shows oscillations with the phonon frequency which turn into sharp peaks at multiples of the phonon period for a larger coupling strength. Destructive interferences between the two phase-locked pulses produce a splitting of the phonon peaks into a doublet. For fixed tau but varying tau_1 the signal shows rapid oscillations at the interband-transition frequency, whose amplitude exhibits bursts at multiples of the phonon period.Comment: 4 pages, 4 figures, RevTex, content change

    Cavity Induced Interfacing of Atoms and Light

    Full text link
    This chapter introduces cavity-based light-matter quantum interfaces, with a single atom or ion in strong coupling to a high-finesse optical cavity. We discuss the deterministic generation of indistinguishable single photons from these systems; the atom-photon entanglement intractably linked to this process; and the information encoding using spatio-temporal modes within these photons. Furthermore, we show how to establish a time-reversal of the aforementioned emission process to use a coupled atom-cavity system as a quantum memory. Along the line, we also discuss the performance and characterisation of cavity photons in elementary linear-optics arrangements with single beam splitters for quantum-homodyne measurements.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel

    Literature syntheses to inform marine ecosystem management: lessons learned from stakeholder participation

    Get PDF
    Systematic literature syntheses are a key element in the scientific realm, considering the steadily growing amount of available knowledge. Involving stakeholders in the research process brings a wide range of advantages, like broadening the perspectives on the problem in question, increasing the relevance of results for policy- and decision-making, the public and other end-users and thus enhancing the impact and acceptance of research. While participatory approaches are on the rise, reflections on stakeholder involvement in systematic syntheses on environmental management are scarce. We reflect on the process of involving stakeholders with expertise also from outside academia during three literature syntheses with different foci of marine and coastal ecosystem services in the Baltic Sea. Our analysis is based on notes, e-mails, minutes and recordings of internal project meetings, interviews and workshops involving both researchers and stakeholders. We discuss the challenges the participatory approach introduced and develop lessons learned to support the planning of stakeholder engagement for future literature syntheses. We conclude that stakeholder identification, communication, collaboration and knowledge translation are highly time- and resource-intensive processes. Furthermore, appropriate training and experience are necessary for the design, execution and evaluation of participatory methods tailored to each project stage. Therefore, we underline the importance of adequate consideration of the required resources during project planning and implementation. To encourage and support valuable stakeholder engagement and knowledge exchange between the research community and actors of policy and practice, more appreciation of such efforts by funding institutions and within the wider scientific community is needed

    Casting Light Upon The Great Endarkenment

    Get PDF
    While the Enlightenment promoted thinking for oneself independent of religious authority, the ‘Endarkenment’ (Millgram 2015) concerns deference to a new authority: the specialist, a hyperspecializer. Non-specialists need to defer to such authorities as they are unable to understand their reasoning. Millgram describes how humans are capable of being serial hyperspecializers, able to move from one specialism to another. We support the basic thrust of Millgram’s position, and seek to articulate how the core idea is deployed in very different ways in relation to extremely different philosophical areas. We attend to the issue of the degree of isolation of different specialists and we urge greater emphasis on parallel hyperspecialization, which describes how different specialisms can be embodied in one person at one time
    corecore