20 research outputs found

    Book review: Gerald D. Feldman, Austrian banks in the period of National Socialism

    Get PDF
    Even though Germany, Austria, and Hungary experienced a major financial crisis simultaneously in 1931, of the three, only Germany's and Austria's episodes have been investigated in depth. This article offers a thorough assessment of the missing piece. It finds that, just like Germany, Hungary also experienced a twin crisis. The primary reason for the weakness of the financial sector was banks’ excessive exposure to agricultural loans. The fragility of the currency was the result of an early balance-of-payments crisis in 1928/9. The vulnerability of the banking and monetary systems culminated in a twin crisis in 1931

    Musculotopic organization of the motor neurons supplying the mouse hindlimb muscles: a quantitative study using Fluoro-Gold retrograde tracing

    Get PDF
    We have mapped the motor neurons (MNs) supplying the major hindlimb muscles of transgenic (C57/BL6J-ChAT-EGFP) and wild-type (C57/BL6J) mice. The fluorescent retrograde tracer Fluoro-Gold was injected into 19 hindlimb muscles. Consecutive transverse spinal cord sections were harvested, the MNs counted, and the MN columns reconstructed in 3D. Three longitudinal MN columns were identified. The dorsolateral column extends from L4 to L6 and consists of MNs innervating the crural muscles and the foot. The ventrolateral column extends from L1 to L6 and accommodates MNs supplying the iliopsoas, gluteal, and quadriceps femoris muscles. The middle part of the ventral horn hosts the central MN column, which extends between L2–L6 and consists of MNs for the thigh adductor, hamstring, and quadratus femoris muscles. Within these longitudinal columns, the arrangement of the different MN groups reflects their somatotopic organization. MNs innervating muscles developing from the dorsal (e.g., quadriceps) and ventral muscle mass (e.g., hamstring) are situated in the lateral and medial part of the ventral gray, respectively.MN pools belonging to proximal muscles (e.g., quadratus femoris and iliopsoas) are situatedventral to those supplying more distal ones (e.g., plantar muscles). Finally, MNs innervatingflexors (e.g., posterior crural muscles) are more medial than those belonging to extensors ofthe same joint (e.g., anterior crural muscles). These data extend and modify the MN maps in the recently published atlas of the mouse spinal cord and may help when assessing neuronal loss associated with MN diseases

    Projections from the lateral vestibular nucleus to the spinal cord in the mouse

    No full text
    The present study investigated the projections from the lateral vestibular nucleus (LVe) to the spinal cord using retrograde and anterograde tracers. Retrogradely labeled neurons were found after fluoro-gold injections into both the cervical and lumbar cord, with a smaller number of labeled neurons seen after lumbar cord injections. Labeled neurons in the LVe were found in clusters at caudal levels of the nucleus, and a small gap separated these clusters from labeled neurons in the spinal vestibular nucleus (SpVe). In the anterograde study, BDA-labeled fiber tracts were found in both the ventral and ventrolateral funiculi on the ipsilateral side. These fibers terminated in laminae 6–9. Some fibers were continuous with boutons in contact with motor neurons in both the medial and lateral motor neuron columns. In the lumbar and sacral segments, some collaterals from the ipsilateral vestibulospinal tracts were found on the contralateral side, and these fibers mainly terminated in laminae 6–8. The present study reveals for the first time the fiber terminations of the lateral vestibular nucleus in the mouse spinal cord and therefore enhances future functional studies of the vestibulospinal system

    Reorganization of corticospinal output during motor learning

    No full text
    Motor learning is accompanied by widespread changes within the motor cortex, but it is unknown whether these changes are ultimately funneled through a stable corticospinal output channel or whether the corticospinal output itself is plastic. We investigated the consistency of the relationship between corticospinal neuron activity and movement through in vivo two-photon calcium imaging in mice learning a lever-press task. Corticospinal neurons exhibited heterogeneous correlations with movement, with the majority of movement-modulated neurons decreasing activity during movement. Individual cells changed their activity across days, which led to changed associations between corticospinal activity and movement. Unlike previous observations in layer 2/3, activity accompanying learned movements did not become more consistent with learning; instead, the activity of dissimilar movements became more decorrelated. These results indicate that the relationship between corticospinal activity and movement is dynamic and that the types of activity and plasticity are different from and possibly complementary to those in layer 2/3
    corecore