1,611 research outputs found

    Quasi-free (p,2p) and (p,pn) reactions with unstable nuclei

    Get PDF
    We study (p,2p) and (p,pn) reactions at proton energies in the range of 100 MeV -- 1 GeV. Our purpose is to explore the most sensitive observables in unpolarized reactions with inverse kinematics involving radioactive nuclei. We formulate a model based on the eikonal theory to describe total cross sections and momentum distributions of the recoiled residual nucleus. The model is similar to the one adopted for knockout reactions with heavy ions. We show that momentum distributions are sensitive to the angular momentum of the ejected nucleon which can be used as an spectroscopic tool. The total cross sections are sensitive to the nucleon separation energies and to multiple scattering effects. Our calculations also indicate that a beam energy around 500 MeV/nucleon has a smaller dependence on the anisotropy of the nucleon-nucleon elastic scattering.Comment: 17 pages, 12 figures, Accepted for publication in the Physical review

    Anharmonicities of giant dipole excitations

    Get PDF
    The role of anharmonic effects on the excitation of the double giant dipole resonance is investigated in a simple macroscopic model.Perturbation theory is used to find energies and wave functions of the anharmonic ascillator.The cross sections for the electromagnetic excitation of the one- and two-phonon giant dipole resonances in energetic heavy-ion collisions are then evaluated through a semiclassical coupled-channel calculation.It is argued that the variations of the strength of the anharmonic potential should be combined with appropriate changes in the oscillator frequency,in order to keep the giant dipole resonance energy consistent with the experimental value.When this is taken into account,the effects of anharmonicities on the double giant dipole resonance excitation probabilities are small and cannot account for the well-known discrepancy between theory and experiment

    Development of a Thin Large-Area Fiber Detector for Radioactive-Beam Experiments

    Get PDF

    Comparison of exact and approximate cross-sections in relativistic Coulomb excitation

    Full text link
    We present a new method of obtaining time-dependent matrix elements of the electromagnetic pulse produced by a highly-relativistic projectile. These matrix elements are used in a coupled-channel calculation to predict the cross-sections for population of 1- and 2-phonon states of the giant dipole resonance. Comparisons are made with the predictions of the long-wavelength and Born approximations.Comment: 26 pages, LaTex2

    Study of the 14Be^{14}Be Continuum

    Get PDF

    Soft Dipole Modes in Neutron-rich Ni-isotopes in QRRPA

    Full text link
    The soft dipole modes in neutron rich even-even Ni-isotopes are investigated in the quasiparticle relativistic random phase approximation. We study the evolution of strengths distribution, centroid energies of dipole excitation in low-lying and normal GDR regions with the increase of the neutron excess. It is found in the present study that the centroid energies of the soft dipole strengths strongly depend on the thickness of neutron skin along with the neutron rich even-even Ni-isotopes.Comment: 14 pages, 7 figure

    Thomas-Ehrman shifts

    Get PDF

    FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy

    Get PDF
    Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the ALADIN magnet, the MUSIC IV TPC, the LAND2 neutron detector and the TOFWALL scintillator TOF system, integrated with newly designed detectors in the interaction Region (IR) around the carbon removable target: a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger for detection of light fragments emitted at large angles (KENTROS). The scientific program of the FIRST experiment started on summer 2011 with the study of the 400 MeV/nucleon 12C beam fragmentation on thin (8mm) carbon targe
    corecore