506 research outputs found
Unconventional Superconductivity and Electron Correlations in Cobalt Oxyhydrate NaCoOHO
We report a precise Co nuclear quadrupolar resonance (NQR) measurement
on the recently discovered cobalt oxyhydrate NaCoOHO superconductor from =40 K down to 0.2 K. We find that in the
normal state the spin-lattice relaxation rate follows a Curie-Weiss
type temperature () variation, , with =-42 K,
suggesting two-dimensional antiferromagnetic spin correlations. Below =3.9
K, decreases with no coherence peak and follows a dependence with
2.2 down to 2.0 K but crosses over to a
variation below =1.4 K, which suggests non s-wave superconductivity. The
data in the superconducting state are most consistent with the existence of
line nodes in the gap function.Comment: submitted for publication in June '0
Home Blood Pressure Monitoring: New Evidence for an Expanded Role
In a Perspective, Mark Caulfield discusses potential implications of using home blood pressure monitoring for diagnosis and treatment of hypertension. Please see later in the article for the Editors' Summar
What Does The Korringa Ratio Measure?
We present an analysis of the Korringa ratio in a dirty metal, emphasizing
the case where a Stoner enhancement of the uniform susceptibilty is present. We
find that the relaxation rates are significantly enhanced by disorder, and that
the inverse problem of determining the bare density of states from a study of
the change of the Knight shift and relaxation rates with some parameter, such
as pressure, has rather constrained solutions, with the disorder playing an
important role. Some preliminary applications to the case of chemical
substitution in the RbKC family of superconductors is
presented and some other relevant systems are mentioned.Comment: 849, Piscataway, New Jersey 08855 24 June 199
Heavy-Fermion Formation at the Metal-to-Insulator Transition in GdSrTiO
The perovskite-like transition-metal oxide GdSrTiO is
investigated by measurements of resistivity, specific-heat, and electron
paramagnetic resonance (EPR). Approaching the metal-to-insulator transition
from the metallic regime (), the Sommerfeld coefficient of
the specific heat becomes strongly enhanced and the resistivity increases
quadratically at low temperatures, which both are fingerprints of strong
electronic correlations. The temperature dependence of the dynamic
susceptibility, as determined from the Gd-EPR linewidth, signals the
importance of strong spin fluctuations, as observed in heavy-fermion compounds.Comment: 4pages, 3 figure
Alternative, but expensive, energy transition scenario featuring carbon capture and utilization can preserve existing energy demand technologies
To reach net-zero carbon emissions, most climate change mitigation scenarios model a rapid transition from hydrocarbon-based energy to renewables, wide-scale electrification, and offsets to mitigate residual emissions. This requires phasing out existing hydrocarbon infrastructure and adjustments to electrification. Carbon capture and utilization (CCU) to produce synthetic fuels could be an alternative way to reach net zero while maintaining some existing energy infrastructure and minimizing the societal transition required, yet such scenarios remain unexamined. Here, we analyzed a CCU-based net-zero emissions scenario using a global energy system model. We find that synthetic fuel could meet 30% of energy demand by 2050, resulting in maintaining some existing technologies in energy demand sectors. Meanwhile, this scenario requires rapid upscaling of non-biomass renewables and direct air capture. The CCU-based scenario could be an alternative pathway; however, it involves multiple challenges related to technological feasibility and increased mitigation costs relative to net-zero scenarios using renewables, bioenergy, and carbon dioxide removal
Observing the Sun with Atacama Large Millimeter/submillimeter Array (ALMA): High Resolution Interferometric Imaging
Observations of the Sun at millimeter and submillimeter wavelengths offer a
unique probe into the structure, dynamics, and heating of the chromosphere; the
structure of sunspots; the formation and eruption of prominences and filaments;
and energetic phenomena such as jets and flares. High-resolution observations
of the Sun at millimeter and submillimeter wavelengths are challenging due to
the intense, extended, low- contrast, and dynamic nature of emission from the
quiet Sun, and the extremely intense and variable nature of emissions
associated with energetic phenomena. The Atacama Large Millimeter/submillimeter
Array (ALMA) was designed with solar observations in mind. The requirements for
solar observations are significantly different from observations of sidereal
sources and special measures are necessary to successfully carry out this type
of observations. We describe the commissioning efforts that enable the use of
two frequency bands, the 3 mm band (Band 3) and the 1.25 mm band (Band 6), for
continuum interferometric-imaging observations of the Sun with ALMA. Examples
of high-resolution synthesized images obtained using the newly commissioned
modes during the solar commissioning campaign held in December 2015 are
presented. Although only 30 of the eventual 66 ALMA antennas were used for the
campaign, the solar images synthesized from the ALMA commissioning data reveal
new features of the solar atmosphere that demonstrate the potential power of
ALMA solar observations. The ongoing expansion of ALMA and solar-commissioning
efforts will continue to enable new and unique solar observing capabilities.Comment: 22 pages, 12 figures, accepted for publication in Solar Physic
Ultrasound attenuation in gap-anisotropic systems
Transverse ultrasound attenuation provides a weakly-coupled probe of momentum
current correlations in electronic systems. We develop a simple theory for the
interpretation of transverse ultrasound attenuation coefficients in systems
with nodal gap anisotropy. Applying this theory we show how ultrasound can
delineate between extended-s and d-wave scenarios for the cuprate
superconductors.Comment: Uuencode file: 4 pages (Revtex), 3 figures. Some references adde
Observing the Sun with the Atacama Large Millimeter-submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping
The Atacama Large Millimeter-submillimeter Array (ALMA) radio telescope has
commenced science observations of the Sun starting in late 2016. Since the Sun
is much larger than the field of view of individual ALMA dishes, the ALMA
interferometer is unable to measure the background level of solar emission when
observing the solar disk. The absolute temperature scale is a critical
measurement for much of ALMA solar science, including the understanding of
energy transfer through the solar atmosphere, the properties of prominences,
and the study of shock heating in the chromosphere. In order to provide an
absolute temperature scale, ALMA solar observing will take advantage of the
remarkable fast-scanning capabilities of the ALMA 12m dishes to make
single-dish maps of the full Sun. This article reports on the results of an
extensive commissioning effort to optimize the mapping procedure, and it
describes the nature of the resulting data. Amplitude calibration is discussed
in detail: a path that utilizes the two loads in the ALMA calibration system as
well as sky measurements is described and applied to commissioning data.
Inspection of a large number of single-dish datasets shows significant
variation in the resulting temperatures, and based on the temperature
distributions we derive quiet-Sun values at disk center of 7300 K at lambda=3
mm and 5900 K at lambda=1.3 mm. These values have statistical uncertainties of
order 100 K, but systematic uncertainties in the temperature scale that may be
significantly larger. Example images are presented from two periods with very
different levels of solar activity. At a resolution of order 25 arcsec, the 1.3
mm wavelength images show temperatures on the disk that vary over about a 2000
K range.Comment: Solar Physics, accepted: 24 pages, 13 figure
Unique Spin Dynamics and Unconventional Superconductivity in the Layered Heavy Fermion Compound CeIrIn_5:NQR Evidence
We report measurements of the ^{115}In nuclear spin-lattice relaxation rate
(1/T_1) between T=0.09 K and 100 K in the new heavy fermion (HF) compound
CeIrIn_5. At 0.4 K < T < 100 K, 1/T_1 is strongly T-dependent, which indicates
that CeIrIn_5 is much more itinerant than known Ce-based HFs. We find that
1/T_1T, subtracting that for LaIrIn_5, follows a 1/(T+\theta)^{3/4} variation
with \theta=8 K. We argue that this novel feature points to anisotropic, due to
a layered crystal structure, spin fluctuations near a magnetic ordering. The
bulk superconductivity sets in at 0.40 K below which the coherence peak is
absent and 1/T_1 follows a T^3 variation, which suggests unconventional
superconductivity with line-node gap.Comment: minor changes, appeared in PRL (4 pages, 4 figures
High-Mass Cloud Cores in the eta Carinae Giant Molecular Cloud
We carried out an unbiased survey for massive dense cores in the giant
molecular cloud associated with eta Carinae with the NANTEN telescope in 12CO,
13CO, and C18O 1-0 emission lines. We identified 15 C18O cores. Two of the 15
cores are associated with IRAS point sources whose luminosities are larger than
10^4 Lo, which indicates that massive star formation is occuring within these
cores. Five cores including the two with IRAS sources are associated with MSX
point sources. We detected H13CO+ (1-0) emission toward 4 C18O cores, one of
which is associated with neither IRAS nor MSX point sources. This core shows
the presence of a bipolar molecular outflow in 12CO (2-1), which indicates that
star formation is also occuring in the core. In total, six C18O cores out of 15
are experienced star formation, and at least 2 of 15 are massive-star forming
cores in the eta Car GMC. We found that massive star formation occurs
preferentially in cores with larger column density, mass, number density, and
smaller ratio of virial mass to LTE mass Mvir/M. We also found that the cores
in the eta Car GMC are characterized by large line width and Mvir/M on average
compared to the cores in other GMCs. We investigated the origin of a large
amount of turbulence in the eta Car GMC. We propose the possibility that the
large turbulence was pre-existing when the GMC was formed, and is now
dissipating. Mechanisms such as multiple supernova explosions in the Carina
flare supershell may have contributed to form a GMC with a large amount of
turbulence.Comment: 41 pages, including 11 fugures and 9 tables. Accepted by ApJ. Author
changed. Paper with high resolution figures is available at
http://astrol.cias.osakafu-u.ac.jp/~yonekura/work/paper/etaCar
- …