940 research outputs found

    Scaling Microseismic Cloud Shape During Hydraulic Stimulation Using In Situ Stress and Permeability

    Get PDF
    Forecasting microseismic cloud shape as a proxy of stimulated rock volume may improve the design of an energy extraction system. The microseismic cloud created during hydraulic stimulation of geothermal reservoirs is known empirically to extend in the general direction of the maximum principal stress. However, this empirical relationship is often inconsistent with reported results, and the cloud growth process remains poorly understood. This study investigates microseismic cloud growth using data obtained from a hydraulic stimulation project in Basel, Switzerland, and explores its correlation with measured in situ stress. We applied principal component analysis to a time series of microseismicity for macroscopic characterization of microseismic cloud growth in two- and three-dimensional space. The microseismic cloud, in addition to extending in the general direction of maximum principal stress, expanded in the direction of intermediate principal stress. The orientation of the least microseismic cloud growth was stable and almost identical to the minimum principal stress direction. Further, microseismic cloud shape ratios showed good agreement when compared with in situ stress magnitude ratios. The permeability tensor estimated from microseismicity also provided a good correlation in terms of direction and magnitude with the microseismic cloud growth. We show that in situ stress plays a dominant role by controlling the permeability of each existing fracture in the reservoir fracture system. Consequently, microseismic cloud growth can be scaled by in situ stress as a first-order approximation if there is sufficient variation in the orientation of existing faults

    Broadly tunable, high-power terahertz radiation up to 73 K from a stand-alone Bi2Sr2CaCu2O8+delta mesa

    Get PDF
    High-power, continuous, broadly tunable THz radiation from 0.29 to 1.06 THz, was obtained from the outer current-voltage characteristic (IVC) branch of a single stand-alone mesa of the high-transition temperature T-c superconductor Bi2Sr2CaCu2O8+delta. The particular metallic film structures placed both beneath and atop the mesas resulted in more efficient heat dissipation, higher allowed applied dc voltages, larger IVC loops, wider emission temperature ranges, and much broader emission frequency tunability than obtained previously

    Imaging Oxygen Defects and their Motion at a Manganite Surface

    Full text link
    Manganites are technologically important materials, used widely as solid oxide fuel cell cathodes: they have also been shown to exhibit electroresistance. Oxygen bulk diffusion and surface exchange processes are critical for catalytic action, and numerous studies of manganites have linked electroresistance to electrochemical oxygen migration. Direct imaging of individual oxygen defects is needed to underpin understanding of these important processes. It is not currently possible to collect the required images in the bulk, but scanning tunnelling microscopy could provide such data for surfaces. Here we show the first atomic resolution images of oxygen defects at a manganite surface. Our experiments also reveal defect dynamics, including oxygen adatom migration, vacancy-adatom recombination and adatom bistability. Beyond providing an experimental basis for testing models describing the microscopics of oxygen migration at transition metal oxide interfaces, our work resolves the long-standing puzzle of why scanning tunnelling microscopy is more challenging for layered manganites than for cuprates.Comment: 7 figure

    Computed tomography image using sub-terahertz waves generated from a high-T-c superconducting intrinsic Josephson junction oscillator

    Get PDF
    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T-c superconductor Bi2Sr2CaCu2O8+delta was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications

    IL-18 neutralization ameliorates obstruction-induced epithelial–mesenchymal transition and renal fibrosis

    Get PDF
    Ureteral obstruction results in renal fibrosis in part due to inflammatory injury. The role of interleukin-18 (IL-18), an important mediator of inflammation, in the genesis of renal fibrosis was studied using transgenic mice overexpressing human IL-18-binding protein. In addition, HK-2 cells were analyzed following direct exposure to IL-18 compared to control media. Two weeks after ureteral obstruction, the kidneys of wild-type mice had a significant increase in IL-18 production, collagen deposition, α-smooth muscle actin and RhoA expression, fibroblast and macrophage accumulation, chemokine expression, and transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) production, whereas E-cadherin expression was simultaneously decreased. The transgenic mice with neutralized IL-18 activity exhibited significant reductions in these indicators of obstruction-induced renal fibrosis and epithelial– mesenchymal transition, without demonstrating alterations in TGF-β1 or TNF-α activity. Similarly, the HK-2 cells exhibited increased α-smooth muscle actin expression and collagen production, and decreased E-cadherin expression in response to IL-18 stimulation without alterations in TNF-α or TGF-β1 activity. Our study demonstrates that IL-18 is a significant mediator of obstruction-induced renal fibrosis and epithelial– mesenchymal transition independent of downstream TGF-β1 or TNF-α production

    AMSR2 Soil Moisture Product Validation

    Get PDF
    The Advanced Microwave Scanning Radiometer 2 (AMSR2) is part of the Global Change Observation Mission-Water (GCOM-W) mission. AMSR2 fills the void left by the loss of the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) after almost 10 years. Both missions provide brightness temperature observations that are used to retrieve soil moisture. Merging AMSR-E and AMSR2 will help build a consistent long-term dataset. Before tackling the integration of AMSR-E and AMSR2 it is necessary to conduct a thorough validation and assessment of the AMSR2 soil moisture products. This study focuses on validation of the AMSR2 soil moisture products by comparison with in situ reference data from a set of core validation sites. Three products that rely on different algorithms were evaluated; the JAXA Soil Moisture Algorithm (JAXA), the Land Parameter Retrieval Model (LPRM), and the Single Channel Algorithm (SCA). Results indicate that overall the SCA has the best performance based upon the metrics considered

    Chronological changes of incidence and prognosis of children with asymptomatic congenital cytomegalovirus infection in Sapporo, Japan

    Get PDF
    BACKGROUND: Chronological changes of the incidence of congenital cytomegalovirus (CMV) infection and the longitudinal prognosis in children with asymptomatic congenital infection were investigated. METHODS: Congenital CMV infection, as demonstrated by isolation of the virus within the first week of life, was diagnosed in infants born in Sapporo, Japan, during the 26-year period between 1977 and 2002. RESULTS: Congenital infection was diagnosed in 37 (0.31%) of 11,938 infants. Thirty-two infants were (86.5%) asymptomatic and 5 (13.5%) were symptomatic at birth. CONCLUSIONS: Although a decrease in the total incidence of congenital CMV infection has been seen in recent years, screening of congenital infection at birth seems to be necessary to detect late-onset neurodevelopmental sequelae

    Influence of the local heating position on the terahertz emission power from high-T-c superconducting Bi2Sr2CaCu2O8+delta mesas

    Get PDF
    Simultaneous measurements of spectroscopic terahertz emissions from and SiC photoluminescent local temperature T(r) distributions of high transition temperature T-c superconducting Bi2Sr2CaCu2O8+delta rectangular mesa devices were made. A local region with T(r) \u3e T-c known as a hot spot can emerge with current bias changes. When the hot spot position was moved to a mesa end by locally heating the mesa surface with a laser beam, the intensity of the emission increased, but no changes to its frequency or line width were observed. These results suggest that higher power radiation is attainable by adjusting the hot spot position
    • …
    corecore