356 research outputs found

    Two different zinc(II)-aqua complexes held up by a metal-oxide based support: synthesis, crystal structure and catalytic activity of [HMTAH]<SUB>2</SUB>[{Zn(H<SUB>2</SUB>O)<SUB>5</SUB>}{Zn(H<SUB>2</SUB>O)<SUB>4</SUB>}{Mo<SUB>7</SUB>O<SUB>24</SUB>}]&#183;2H<SUB>2</SUB>O (HMTAH = protonated hexamethylenetetramine)

    Get PDF
    An inorganic-organic hybrid material, [HMTAH]2[{Zn(H2O)5}{Zn(H2O)4}{Mo7O24}]&#183;2H2O (1) (where HMTAH = protonated hxamethylenetetramine) has been synthesized and structurally characterized. The compound 1 crystallizes in a monoclinic space group C2/c. The crystal data of 1: &#945; = 43&#183;12(3), b = 12&#183;399(10), c = 16&#183;285(13), &#946; = 111&#183;131(11), Z = 8. Its crystal structure shows that two different Zn(II)-aqua complexes, [Zn(H2O)5]2+ and [Zn(H2O)4]2+ are covalently coordinated to a heptamolybdate anion [Mo7O24]6- resulting in an anionic species of polyoxometalate supported zinc-aqua complexes, [{Zn(H2O)5}{Zn(H2O)4}{Mo7O24}]2-, that is stabilized with two protonated hexamethylenetetramine cations in the title compound 1. In the crystal structure, both lattice water molecules are found to interact with the heptamolybdate cluster anion and the protonated hexamethylenetetramine cation resulting in an intricate three-dimensional hydrogen bonding network. Interestingly, compound 1 exhibits catalytic activity towards oxidation of some primary alcohols

    Polyoxometalates: toward new materials

    Get PDF
    This article describes an account of some of our polyoxometalate (POM)-based research, we have been doing in our laboratory last several years. There are several well-defined POM cluster anions, that are structurally characterized. We have chosen Anderson-type of heteropolyanion [Al(OH)6Mo6O18]3- and explored its linking propensity in different dimensions using 's', 'd' and 'f' block elements as linkers.We have demonstrated how a lanthanide linker provides a new pathway in forming a two-dimensional linked {As8V14} system [{Ln(H2O)6}2As8V14O42(SO3)]n · 8nH2O, that is derived from discrete {As8V14} cluster containing compound (NH4)6[As8V14O42(SO3)]. A polyoxometalate compound has been described in which a reduced tungstovanadate-heteropolyanion clusters get linked via capped V = O groups into one-dimensional chains. All these systems have already been reported elsewhere. The last portion of this article will be described by a new system [3-ampH]6[V10O28] · 2H2O having discrete molecular structure and extended supramolecular structure

    Multiplex quantitative PCR for single-reaction genetically modified (GM) plant detection and identification of false-positive GM plants linked to Cauliflower mosaic virus (CaMV) infection.

    Get PDF
    BACKGROUND:Most genetically modified (GM) plants contain a promoter, P35S, from the plant virus, Cauliflower mosaic virus (CaMV), and many have a terminator, TNOS, derived from the bacterium, Agrobacterium tumefaciens. Assays designed to detect GM plants often target the P35S and/or TNOS DNA sequences. However, because the P35S promoter is derived from CaMV, these detection assays can yield false-positives from non-GM plants infected by this naturally-occurring virus. RESULTS:Here we report the development of an assay designed to distinguish CaMV-infected plants from GM plants in a single multiplexed quantitative PCR (qPCR) reaction. Following initial testing and optimization via PCR and singleplex-to-multiplex qPCR on both plasmid and plant DNA, TaqMan qPCR probes with different fluorescence wavelengths were designed to target actin (a positive-control plant gene), P35S, P3 (a CaMV-specific gene), and TNOS. We tested the specificity of our quadruplex qPCR assay using different DNA extracts from organic watercress and both organic and GM canola, all with and without CaMV infection, and by using commercial and industrial samples. The limit of detection (LOD) of each target was determined to be 1% for actin, 0.001% for P35S, and 0.01% for both P3 and TNOS. CONCLUSIONS:This assay was able to distinguish CaMV-infected plants from GM plants in a single multiplexed qPCR reaction for all samples tested in this study, suggesting that this protocol is broadly applicable and readily transferrable to any interested parties with a qPCR platform

    Cloning and Characterization of a Putative TAC1 Ortholog Associated with Leaf Angle in Maize (Zea mays L.)

    Get PDF
    BACKGROUND: Modifying plant architecture to increase photosynthesis efficiency and reduce shade avoidance response is very important for further yield improvement when crops are grown in high density. Identification of alleles controlling leaf angle in maize is needed to provide insight into molecular mechanism of leaf development and achieving ideal plant architecture to improve grain yield. METHODOLOGY/PRINCIPAL FINDINGS: The gene cloning was done by using comparative genomics, and then performing real-time polymerase chain reaction (RT-PCR) analysis to assay gene expression. The gene function was validated by sequence dissimilarity analysis and QTL mapping using a functional cleaved amplified polymorphism (CAP). CONCLUSIONS: The leaf angle is controlled by a major quantitative trait locus, ZmTAC1 (Zea mays L. Leaf Angle Control 1). ZmTAC1 has 4 exons encoding a protein with 263 amino acids, and its domains are the same as those of the rice OsTAC1 protein. ZmTAC1 was found to be located in the region of qLA2 by using the CAP marker and the F(2:3) families from the cross between Yu82 and Shen137. Real-time PCR analysis revealed ZmTAC1 expression was the highest in the leaf-sheath pulvinus, less in the leaf and shoot apical meristem, and the lowest in the root. A nucleotide difference in the 5'-untranslated region (UTR) between the compact inbred line Yu82 ("CTCC") and the expanded inbred line Shen137 ("CCCC") influences the expression level of ZmTAC1, further controlling the size of the leaf angle. Sequence verification of the change in the 5'-UTR revealed ZmTAC1 with "CTCC" was present in 13 compact inbred lines and ZmTAC1 with "CCCC" was present in 18 expanded inbred lines, indicating ZmTAC1 had been extensively utilized in breeding with regard to the improvement of the maize plant architecture

    Development and validation of real-time PCR screening methods for detection of cry1A.105 and cry2Ab2 genes in genetically modified organisms

    Get PDF
    Primers and probes were developed for the element-specific detection of cry1A.105 and cry2Ab2 genes, based on their DNA sequence as present in GM maize MON89034. Cry genes are present in many genetically modified (GM) plants and they are important targets for developing GMO element-specific detection methods. Element-specific methods can be of use to screen for the presence of GMOs in food and feed supply chains. Moreover, a combination of GMO elements may indicate the potential presence of unapproved GMOs (UGMs). Primer-probe combinations were evaluated in terms of specificity, efficiency and limit of detection. Except for specificity, the complete experiment was performed in 9 PCR runs, on 9 different days and by testing 8 DNA concentrations. The results showed a high specificity and efficiency for cry1A.105 and cry2Ab2 detection. The limit of detection was between 0.05 and 0.01 ng DNA per PCR reaction for both assays. These data confirm the applicability of these new primer-probe combinations for element detection that can contribute to the screening for GM and UGM crops in food and feed samples

    454 sequencing of pooled BAC clones on chromosome 3H of barley

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome sequencing of barley has been delayed due to its large genome size (ca. 5,000Mbp). Among the fast sequencing systems, 454 liquid phase pyrosequencing provides the longest reads and is the most promising method for BAC clones. Here we report the results of pooled sequencing of BAC clones selected with ESTs genetically mapped to chromosome 3H.</p> <p>Results</p> <p>We sequenced pooled barley BAC clones using a 454 parallel genome sequencer. A PCR screening system based on primer sets derived from genetically mapped ESTs on chromosome 3H was used for clone selection in a BAC library developed from cultivar "Haruna Nijo". The DNA samples of 10 or 20 BAC clones were pooled and used for shotgun library development. The homology between contig sequences generated in each pooled library and mapped EST sequences was studied. The number of contigs assigned on chromosome 3H was 372. Their lengths ranged from 1,230 bp to 58,322 bp with an average 14,891 bp. Of these contigs, 240 showed homology and colinearity with the genome sequence of rice chromosome 1. A contig annotation browser supplemented with query search by unique sequence or genetic map position was developed. The identified contigs can be annotated with barley cDNAs and reference sequences on the browser. Homology analysis of these contigs with rice genes indicated that 1,239 rice genes can be assigned to barley contigs by the simple comparison of sequence lengths in both species. Of these genes, 492 are assigned to rice chromosome 1.</p> <p>Conclusions</p> <p>We demonstrate the efficiency of sequencing gene rich regions from barley chromosome 3H, with special reference to syntenic relationships with rice chromosome 1.</p

    Grafting versus seed propagated apricot populations: two main gene pools in Tunisia evidenced by SSR markers and model-based Bayesian clustering

    Get PDF
    Apricot was introduced into the Mediterranean Basin from China and Asian mountains through the Middle-East and the Central Europe. Traditionally present in Tunisia, we were interested in accessing the origin of apricot species in the country, and in particular in the number and the location of its introductions. A set of 82 representative apricot accessions including 49 grafted cultivars and 33 seed propagated ‘Bargougs’ were genotyped using 24 microsatellite loci revealing a total of 135 alleles. The model-based Bayesian clustering analysis using both Structure and InStruct programs as well as the multivariate method revealed five distinct genetic clusters. The genetic differentiation among clusters showed that cluster 1, with only four cultivars, was the most differentiated from the four remaining genetic clusters, which constituted the largest part of the studied germplasm. According to their geographic origin, the five identified groups (north, centre, south, Gafsa oasis and other oases groups) enclosed a similar variation within group, with a low level of differentiation. Overall results highlighted the distinction of two apricot gene pools in Tunisia related to the different mode of propagation of the cultivars: grafted and seed propagated apricot, which enclosed a narrow genetic basis. Our findings support the assumption that grafting and seed propagated apricots shared the same origin

    A High Resolution Genetic Map Anchoring Scaffolds of the Sequenced Watermelon Genome

    Get PDF
    As part of our ongoing efforts to sequence and map the watermelon (Citrullus spp.) genome, we have constructed a high density genetic linkage map. The map positioned 234 watermelon genome sequence scaffolds (an average size of 1.41 Mb) that cover about 330 Mb and account for 93.5% of the 353 Mb of the assembled genomic sequences of the elite Chinese watermelon line 97103 (Citrullus lanatus var. lanatus). The genetic map was constructed using an F8 population of 103 recombinant inbred lines (RILs). The RILs are derived from a cross between the line 97103 and the United States Plant Introduction (PI) 296341-FR (C. lanatus var. citroides) that contains resistance to fusarium wilt (races 0, 1, and 2). The genetic map consists of eleven linkage groups that include 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel) and 36 structure variation (SV) markers and spans ∼800 cM with a mean marker interval of 0.8 cM. Using fluorescent in situ hybridization (FISH) with 11 BACs that produced chromosome-specifc signals, we have depicted watermelon chromosomes that correspond to the eleven linkage groups constructed in this study. The high resolution genetic map developed here should be a useful platform for the assembly of the watermelon genome, for the development of sequence-based markers used in breeding programs, and for the identification of genes associated with important agricultural traits

    Identification of SNP and SSR markers in eggplant using RAD tag sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The eggplant (<it>Solanum melongena </it>L.) genome is relatively unexplored, especially compared to those of the other major <it>Solanaceae </it>crops tomato and potato. In particular, no SNP markers are publicly available; on the other hand, over 1,000 SSR markers were developed and publicly available. We have combined the recently developed Restriction-site Associated DNA (RAD) approach with Illumina DNA sequencing for rapid and mass discovery of both SNP and SSR markers for eggplant.</p> <p>Results</p> <p>RAD tags were generated from the genomic DNA of a pair of eggplant mapping parents, and sequenced to produce ~17.5 Mb of sequences arrangeable into ~78,000 contigs. The resulting non-redundant genomic sequence dataset consisted of ~45,000 sequences, of which ~29% were putative coding sequences and ~70% were in common between the mapping parents. The shared sequences allowed the discovery of ~10,000 SNPs and nearly 1,000 indels, equivalent to a SNP frequency of 0.8 per Kb and an indel frequency of 0.07 per Kb. Over 2,000 of the SNPs are likely to be mappable via the Illumina GoldenGate assay. A subset of 384 SNPs was used to successfully fingerprint a panel of eggplant germplasm, producing a set of informative diversity data. The RAD sequences also included nearly 2,000 putative SSRs, and primer pairs were designed to amplify 1,155 loci.</p> <p>Conclusion</p> <p>The high throughput sequencing of the RAD tags allowed the discovery of a large number of DNA markers, which will prove useful for extending our current knowledge of the genome organization of eggplant, for assisting in marker-aided selection and for carrying out comparative genomic analyses within the <it>Solanaceae </it>family.</p
    corecore