492 research outputs found

    Differences between Doppler velocities of ions and neutral atoms in a solar prominence

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.Context. In astrophysical systems with partially ionized plasma the motion of ions is governed by the magnetic field while the neutral particles can only feel the magnetic field’s Lorentz force indirectly through collisions with ions. The drift in the velocity between ionized and neutral species plays a key role in modifying important physical processes like magnetic reconnection, damping of magnetohydrodynamic waves, transport of angular momentum in plasma through the magnetic field, and heating. Aims. This paper investigates the differences between Doppler velocities of calcium ions and neutral hydrogen in a solar prominence to look for velocity differences between the neutral and ionized species. Methods. We simultaneously observed spectra of a prominence over an active region in H I 397 nm, H I 434 nm, Ca II 397 nm, and Ca II 854 nm using a high dispersion spectrograph of the Domeless Solar Telescope at Hida observatory, and compared the Doppler velocities, derived from the shift of the peak of the spectral lines presumably emitted from optically-thin plasma. Results. There are instances when the difference in velocities between neutral atoms and ions is significant, e.g. 1433 events (∼ 3 % of sets of compared profiles) with a difference in velocity between neutral hydrogen atoms and calcium ions greater than 3σ of the measurement error. However, we also found significant differences between the Doppler velocities of two spectral lines emitted from the same species, and the probability density functions of velocity difference between the same species is not significantly different from those between neutral atoms and ions. Conclusions. We interpreted the difference of Doppler velocities as a result of motions of different components in the prominence along the line of sight, rather than the decoupling of neutral atoms from plasma.This work was supported by a Grant-in-Aid for Scientific Research (No. 22244013, P.I. K. Ichimoto; No. 15K17609, P.I. T. Anan; No. 16H01177, P.I. T. Anan) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. A.H. is supported by his STFC Emest Rutherford Fellowship grant number ST/L00397X/2

    Chromospheric polarimetry through multi-line observations of the 850 nm spectral region

    Full text link
    Future solar missions and ground-based telescopes aim to understand the magnetism of the solar chromosphere. We performed a supporting study in Quintero Noda et al. (2016) focused on the infrared Ca II 8542 A line and we concluded that is one of the best candidates because it is sensitive to a large range of atmospheric heights, from the photosphere to the middle chromosphere. However, we believe that it is worth to try improving the results produced by this line observing additional spectral lines. In that regard, we examined the neighbour solar spectrum looking for spectral lines that could increase the sensitivity to the atmospheric parameters. Interestingly, we discovered several photospheric lines that greatly improve the photospheric sensitivity to the magnetic field vector. Moreover, they are located close to a second chromospheric line that also belongs to the Ca II infrared triplet, i.e. the Ca II 8498 A line, and enhances the sensitivity to the atmospheric parameters at chromospheric layers. We conclude that the lines in the vicinity of the Ca II 8542 A line not only increase its sensitivity to the atmospheric parameters at all layers, but also they constitute an excellent spectral window for chromospheric polarimetry.Comment: 11 pages, 8 figures, 1 tabl

    Solar polarimetry through the K I lines at 770 nm

    Full text link
    We characterize the K I D1 & D2 lines in order to determine whether they could complement the 850 nm window, containing the Ca II infrared triplet lines and several Zeeman sensitive photospheric lines, that was studied previously. We investigate the effect of partial redistribution on the intensity profiles, their sensitivity to changes in different atmospheric parameters, and the spatial distribution of Zeeman polarization signals employing a realistic magnetohydrodynamic simulation. The results show that these lines form in the upper photosphere at around 500 km and that they are sensitive to the line of sight velocity and magnetic field strength at heights where neither the photospheric lines nor the Ca II infrared lines are. However, at the same time, we found that their sensitivity to the temperature essentially comes from the photosphere. Then, we conclude that the K I lines provide a complement to the lines in the 850 nm window for the determination of atmospheric parameters in the upper photosphere, especially for the line of sight velocity and the magnetic field.Comment: 10 pages, 9 figures, main journal publicatio

    Study of the polarization produced by the Zeeman effect in the solar Mg I b lines

    Full text link
    The next generation of solar observatories aim to understand the magnetism of the solar chromosphere. Therefore, it is crucial to understand the polarimetric signatures of chromospheric spectral lines. For this purpose, we here examine the suitability of the three Fraunhofer Mg I b1, b2, and b4 lines at 5183.6, 5172.7, and 5167.3 A, respectively. We start by describing a simplified atomic model of only 6 levels and 3 line transitions for computing the atomic populations of the 3p-4s (multiplet number 2) levels involved in the Mg I b line transitions assuming non-local thermodynamic conditions and considering only the Zeeman effect using the field-free approximation. We test this simplified atom against more complex ones finding that, although there are differences in the computed profiles, they are small compared with the advantages provided by the simple atom in terms of speed and robustness. After comparing the three Mg I lines, we conclude that the most capable one is the b2 line as b1 forms at similar heights and always show weaker polarization signals while b4 is severely blended with photospheric lines. We also compare Mg I b2 with the K I D1 and Ca II 8542 A lines finding that the former is sensitive to the atmospheric parameters at heights that are in between those covered by the latter two lines. This makes Mg I b2 an excellent candidate for future multi-line observations that aim to seamlessly infer the thermal and magnetic properties of different features in the lower solar atmosphere.Comment: 14 pages, 11 figures, and 5 table

    Chromospheric polarimetry through multi-line observations of the 850 nm spectral region II: A magnetic flux tube scenario

    Full text link
    In this publication we continue the work started in Quintero Noda et al. (2017) examining this time a numerical simulation of a magnetic flux tube concentration. Our goal is to study if the physical phenomena that take place in it, in particular, the magnetic pumping, leaves a specific imprint on the examined spectral lines. We find that the profiles from the interior of the flux tube are periodically dopplershifted following an oscillation pattern that is also reflected in the amplitude of the circular polarization signals. In addition, we analyse the properties of the Stokes profiles at the edges of the flux tube discovering the presence of linear polarization signals for the Ca II lines, although they are weak with an amplitude around 0.5% of the continuum intensity. Finally, we compute the response functions to perturbations in the longitudinal field and we estimate the field strength using the weak field approximation. Our results indicate that the height of formation of the spectral lines changes during the magnetic pumping process which makes the interpretation of the inferred magnetic field strength and its evolution more difficult. These results complement those from previous works demonstrating the capabilities and limitations of the 850 nm spectrum for chromospheric Zeeman polarimetry in a very dynamic and complex atmosphere.Comment: 12 pages, 12 figures, 0 tables, MNRAS main journal publicatio

    Chromospheric polarimetry through multi-line observations of the 850 nm spectral region III: Chromospheric jets driven by twisted magnetic fields

    Full text link
    We investigate the diagnostic potential of the spectral lines at 850 nm for understanding the magnetism of the lower atmosphere. For that purpose, we use a newly developed 3D simulation of a chromospheric jet to check the sensitivity of the spectral lines to this phenomenon as well as our ability to infer the atmospheric information through spectropolarimetric inversions of noisy synthetic data. We start comparing the benefits of inverting the entire spectrum at 850 nm versus only the Ca II 8542 A spectral line. We found a better match of the input atmosphere for the former case, mainly at lower heights. However, the results at higher layers were not accurate. After several tests, we determined that we need to weight more the chromospheric lines than the photospheric ones in the computation of the goodness of the fit. The new inversion configuration allows us to obtain better fits and consequently more accurate physical parameters. Therefore, to extract the most from multi-line inversions, a proper set of weights needs to be estimated. Besides that, we conclude again that the lines at 850 nm, or a similar arrangement with Ca II 8542 A plus Zeeman sensitive photospheric lines, poses the best observing configuration for examining the thermal and magnetic properties of the lower solar atmosphere.Comment: 14 pages, 11 figure

    Increasing the Fine Structure Visibility of the Hinode SOT Ca II H Filtergrams

    Full text link
    We present the improved so-called Madmax (OMC) operator selecting maxima of convexities computed in multiple directions around each pixel rewritten in MatLab and shown to be very efficient for pattern recognition. The aim of the algorithm is to trace the bright hair-like features (for ex. chromospheric thin jets or spicules) of solar ultimate observations polluted by a noise of different origins. This popular spatial operator uses the second derivative in the optimally selected direction for which its absolute value has a maximum value. Accordingly, it uses the positivity of the resulting intensity signal affected by a superposed noise. The results are illustrated using a test artificially generated image and real SOT (Hinode) images are also used, to make your own choice of the sensitive parameters to use in improving the visibility of images.Comment: 12 pages, 3 figurs, submitted in Solar Physic
    corecore