857 research outputs found

    The Gas Properties of the W3 GMC: A HARP study

    Get PDF
    We present 12CO, 13CO and C18O J=3-2 maps of the W3 GMC made at the James Clerk Maxwell Telescope. We combine these observations with Five Colleges Radio Astronomy Observatory CO J=1-0 data to produce the first map of molecular-gas temperatures across a GMC and the most accurate determination of the mass distribution in W3 yet obtained. We measure excitation temperatures in the part of the cloud dominated by triggered star formation (the High Density Layer, HDL) of 15-30 K, while in the rest of the cloud, which is relatively unaffected by triggering (Low Density Layer, LDL), the excitation temperature is generally less than 12 K. We identify a temperature gradient in the HDL which we associate with an age sequence in the embedded massive star-forming regions. We measure the mass of the cloud to be 4.4+/-0.4 x 10^5 solar masses, in agreement with previous estimates. Existing sub-mm continuum data are used to derive the fraction of gas mass in dense clumps as a function of position in the cloud. This fraction, which we interpret as a Clump Formation Efficiency (CFE), is significantly enhanced across the HDL, probably due to the triggering. Finally, we measure the 3D rms Mach Number as a function of position and find a correlation between the Mach number and the CFE within the HDL only. This correlation is interpreted as due to feedback from the newly-formed stars and a change in its slope between the three main star-forming regions is construed as another evolutionary effect. We conclude that triggering has affected the star-formation process in the W3 GMC primarily by creating additional dense structures that can collapse into stars. Any traces of changes in CFE due to additional turbulence have since been overruled by the feedback effects of the star-forming process itself.Comment: 14 pages, 11 figures, 1 table, accepted for publication in MNRA

    Estimating column density from ammonia (1,1) emission in star-forming regions

    Get PDF
    We present a new, approximate method of calculating the column density of ammonia in mapping observations of the 23 GHz inversion lines. The temperature regime typically found in star forming regions allows for the assumption of a slowly varying partition function for ammonia. It is therefore possible to determine the column density using only the (J=1,K=1) inversion transition rather than the typical combination of the (1,1) and (2,2) transitions, with additional uncertainties comparable to or less than typical observational error. The proposed method allows column density and mass estimates to be extended into areas of lower signal to noise ratio. We show examples of column density maps around a number of cores in the W3 and Perseus star-forming regions made using this approximation, along with a comparison to the corresponding results obtained using the full two-transition approach. We suggest that this method is a useful tool in studying the distribution of mass around YSOs, particularly in the outskirts of the protostellar envelope where the (2,2) ammonia line is often undetectable on the short timescales necessary for large area mapping.Comment: 6 pages, 6 figures, accepted by MNRA

    Genetic differentiation of Glossina morsitans centralis populations

    Get PDF
    Variation at mitochondrial and microsatellite loci was used to study the breeding and dispersal structure of Glossina morsitans centralis, in six natural populations from Botswana, the Caprivi Strip (Namibia), Zambia, and in a laboratory culture derived from Singida, Tanzania. Only seven mitochondrial haplotypes were found. Mean diversity averaged over the six natural populations was 0.216 ± 0.085. The fixation index FST = 0.866 indicated a high degree of genetic differentiation among populations. Fifty-three alleles were detected among six microsatellite loci and six natural populations. Mean microsatellite diversity was 0.702 ± 0.091. Depending on the estimating model used, fixation indices varied from 0.15 to 0.225 confirming that G. m. centralis populations are strongly subdivided. For all FST estimates, positive correlations were detected between pair-wise genetic distance measures and geographical distances. The difference in fixation indices estimated from mitochondrial or nuclear loci was explained by the greater sensitivity of mitochondrial genomes to genetic drift. Population differentiation can be explained by genetic drift and the subsequent recovery of extant populations from small, discontinuous populations. These data confirm genetically the collapse and retreat of G. m. centralis populations caused by the rinderpest epizootic of the late 19th and early 20th centuries

    Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging

    Full text link
    © 2017 The Author(s). Biofilms are organised aggregates of bacteria that adhere to each other or surfaces. The matrix of extracellular polymeric substances that holds the cells together provides the mechanical stability of the biofilm. In this study, we have applied Brillouin microscopy, a technique that is capable of measuring mechanical properties of specimens on a micrometre scale based on the shift in frequency of light incident upon a sample due to thermal fluctuations, to investigate the micromechanical properties of an active, live Pseudomonas aeruginosa biofilm. Using this non-contact and label-free technique, we have extracted information about the internal stiffness of biofilms under continuous flow. No correlation with colony size was found when comparing the averages of Brillouin shifts of two-dimensional cross-sections of randomly selected colonies. However, when focusing on single colonies, we observed two distinct spatial patterns: In smaller colonies, stiffness increased towards their interior, indicating a more compact structure of the centre of the colony, whereas, larger (over 45 μm) colonies were found to have less stiff interiors

    The star-forming content of the W3 giant molecular cloud

    Full text link
    We have surveyed a ~0.9-square-degree area of the W3 giant molecular cloud and star-forming region in the 850-micron continuum, using the SCUBA bolometer array on the James Clerk Maxwell Telescope. A complete sample of 316 dense clumps was detected with a mass range from around 13 to 2500 Msun. Part of the W3 GMC is subject to an interaction with the HII region and fast stellar winds generated by the nearby W4 OB association. We find that the fraction of total gas mass in dense, 850-micron traced structures is significantly altered by this interaction, being around 5% to 13% in the undisturbed cloud but ~25 - 37% in the feedback-affected region. The mass distribution in the detected clump sample depends somewhat on assumptions of dust temperature and is not a simple, single power law but contains significant structure at intermediate masses. This structure is likely to be due to crowding of sources near or below the spatial resolution of the observations. There is little evidence of any difference between the index of the high-mass end of the clump mass function in the compressed region and in the unaffected cloud. The consequences of these results are discussed in terms of current models of triggered star formation.Comment: 13 pages, 8 figures, 1 table (full source table available on request). Accepted for publication in Monthly Notices of the Royal Astronomical Society (Main Journal
    corecore