460 research outputs found

    Reduction of voluntary dehydration during effort in hot environments

    Get PDF
    During an experimental marching trip the daily positive fluid balance was preserved by providing a wide choice of beverages during the hours of the day. It was found that the beverage most suitable for drinking in large quantities during periods of effort was a cold drink with sweetened (citrus) fruit taste. Carbonated drinks, including beer, but milk also, were found unsuitable for this purpose

    When resources collide: Towards a theory of coincidence in information spaces

    Get PDF
    This paper is an attempt to lay out foundations for a general theory of coincidence in information spaces such as the World Wide Web, expanding on existing work on bursty structures in document streams and information cascades. We elaborate on the hypothesis that every resource that is published in an information space, enters a temporary interaction with another resource once a unique explicit or implicit reference between the two is found. This thought is motivated by Erwin Shroedingers notion of entanglement between quantum systems. We present a generic information cascade model that exploits only the temporal order of information sharing activities, combined with inherent properties of the shared information resources. The approach was applied to data from the world's largest online citizen science platform Zooniverse and we report about findings of this case study

    Biomedical term mapping databases

    Get PDF
    Longer words and phrases are frequently mapped onto a shorter form such as abbreviations or acronyms for efficiency of communication. These abbreviations are pervasive in all aspects of biology and medicine and as the amount of biomedical literature grows, so does the number of abbreviations and the average number of definitions per abbreviation. Even more confusing, different authors will often abbreviate the same word/phrase differently. This ambiguity impedes our ability to retrieve information, integrate databases and mine textual databases for content. Efforts to standardize nomenclature, especially those doing so retrospectively, need to be aware of different abbreviatory mappings and spelling variations. To address this problem, there have been several efforts to develop computer algorithms to identify the mapping of terms between short and long form within a large body of literature. To date, four such algorithms have been applied to create online databases that comprehensively map biomedical terms and abbreviations within MEDLINE: ARGH (http://lethargy.swmed.edu/ARGH/argh.asp), the Stanford Biomedical Abbreviation Server (http://bionlp.stanford.edu/abbreviation/), AcroMed (http://medstract.med.tufts.edu/acro1.1/index.htm) and SaRAD (http://www.hpl.hp.com/research/idl/projects/abbrev.html). In addition to serving as useful computational tools, these databases serve as valuable references that help biologists keep up with an ever-expanding vocabulary of terms

    SESAME: Semantic Editing of Scenes by Adding, Manipulating or Erasing Objects

    Full text link
    Recent advances in image generation gave rise to powerful tools for semantic image editing. However, existing approaches can either operate on a single image or require an abundance of additional information. They are not capable of handling the complete set of editing operations, that is addition, manipulation or removal of semantic concepts. To address these limitations, we propose SESAME, a novel generator-discriminator pair for Semantic Editing of Scenes by Adding, Manipulating or Erasing objects. In our setup, the user provides the semantic labels of the areas to be edited and the generator synthesizes the corresponding pixels. In contrast to previous methods that employ a discriminator that trivially concatenates semantics and image as an input, the SESAME discriminator is composed of two input streams that independently process the image and its semantics, using the latter to manipulate the results of the former. We evaluate our model on a diverse set of datasets and report state-of-the-art performance on two tasks: (a) image manipulation and (b) image generation conditioned on semantic labels

    Case Report Protein-Loosing Entropathy Induced by Unique Combination of CMV and HP in an Immunocompetent Patient

    Get PDF
    Protein-losing gastroenteropathies are characterized by an excessive loss of serum proteins into the gastrointestinal tract, resulting in hypoproteinemia (detected as hypoalbuminemia), edema, and, in some cases, pleural and pericardial effusions. Protein-losing gastroenteropathies can be caused by a diverse group of disorders and should be suspected in a patient with hypoproteinemia in whom other causes, such as malnutrition, proteinuria, and impaired liver protein synthesis, have been excluded. In this paper, we present a case of protein-losing enteropathy in a 22-year-old immunocompetent male with a coinfection of CMV and Hp

    GAN-based multiple adjacent brain MRI slice reconstruction for unsupervised alzheimer’s disease diagnosis

    Get PDF
    Unsupervised learning can discover various unseen diseases, relying on large-scale unannotated medical images of healthy subjects. Towards this, unsupervised methods reconstruct a single medical image to detect outliers either in the learned feature space or from high reconstruction loss. However, without considering continuity between multiple adjacent slices, they cannot directly discriminate diseases composed of the accumulation of subtle anatomical anomalies, such as Alzheimer's Disease (AD). Moreover, no study has shown how unsupervised anomaly detection is associated with disease stages. Therefore, we propose a two-step method using Generative Adversarial Network-based multiple adjacent brain MRI slice reconstruction to detect AD at various stages: (Reconstruction) Wasserstein loss with Gradient Penalty + L1 loss---trained on 3 healthy slices to reconstruct the next 3 ones---reconstructs unseen healthy/AD cases; (Diagnosis) Average/Maximum loss (e.g., L2 loss) per scan discriminates them, comparing the reconstructed/ground truth images. The results show that we can reliably detect AD at a very early stage with Area Under the Curve (AUC) 0.780 while also detecting AD at a late stage much more accurately with AUC 0.917; since our method is fully unsupervised, it should also discover and alert any anomalies including rare disease.Comment: 10 pages, 4 figures, Accepted to Lecture Notes in Bioinformatics (LNBI) as a volume in the Springer serie

    Probabilistic reasoning with a bayesian DNA device based on strand displacement

    Get PDF
    We present a computing model based on the DNA strand displacement technique which performs Bayesian inference. The model will take single stranded DNA as input data, representing the presence or absence of a specific molecular signal (evidence). The program logic encodes the prior probability of a disease and the conditional probability of a signal given the disease playing with a set of different DNA complexes and their ratios. When the input and program molecules interact, they release a different pair of single stranded DNA species whose relative proportion represents the application of Bayes? Law: the conditional probability of the disease given the signal. The models presented in this paper can empower the application of probabilistic reasoning in genetic diagnosis in vitro

    Original Contribution Do Psychosocial Stress and Social Disadvantage Modify the Association Between Air Pollution and Blood Pressure? The Multi-Ethnic Study of Atherosclerosis

    Get PDF
    Researchers have theorized that social and psychosocial factors increase vulnerability to the deleterious health effects of environmental hazards. We used baseline examination data (2000)(2001)(2002) from the Multi-Ethnic Study of Atherosclerosis. Participants were 45-84 years of age and free of clinical cardiovascular disease at enrollment (n = 6814). The modifying role of social and psychosocial factors on the association between exposure to air pollution comprising particulate matter less than 2.5 µm in aerodynamic diameter (PM 2.5 ) and blood pressure measures were examined using linear regression models. There was no evidence of synergistic effects of higher PM 2.5 and adverse social/psychosocial factors on blood pressure. In contrast, there was weak evidence of stronger associations of PM 2.5 with blood pressure in higher socioeconomic status groups. For example, those in the 10th percentile of the income distribution (i.e., low income) showed no association between PM 2.5 and diastolic blood pressure (b = −0.41 mmHg; 95% confidence interval: −1.40, 0.61), whereas those in the 90th percentile of the income distribution (i.e., high income) showed a 1.52-mmHg increase in diastolic blood pressure for each 10-µg/m 3 increase in PM 2.5 (95% confidence interval: 0.22, 2.83). Our results are not consistent with the hypothesis that there are stronger associations between PM 2.5 exposures and blood pressure in persons of lower socioeconomic status or those with greater psychosocial adversity. air pollution; blood pressure; population groups; social environment; social medicine; social psychology Abbreviations: CVD, cardiovascular disease; DBP, diastolic blood pressure; ETS, exposure to second-hand smoke; MAP, mean arterial pressure; MESA, Multi-Ethnic Study of Atherosclerosis; PM 2.5 , particulate matter less than 2.5 µm in aerodynamic diameter; PP, pulse pressure; SBP, systolic blood pressure; SES, socioeconomic status

    Gene and protein nomenclature in public databases

    Get PDF
    BACKGROUND: Frequently, several alternative names are in use for biological objects such as genes and proteins. Applications like manual literature search, automated text-mining, named entity identification, gene/protein annotation, and linking of knowledge from different information sources require the knowledge of all used names referring to a given gene or protein. Various organism-specific or general public databases aim at organizing knowledge about genes and proteins. These databases can be used for deriving gene and protein name dictionaries. So far, little is known about the differences between databases in terms of size, ambiguities and overlap. RESULTS: We compiled five gene and protein name dictionaries for each of the five model organisms (yeast, fly, mouse, rat, and human) from different organism-specific and general public databases. We analyzed the degree of ambiguity of gene and protein names within and between dictionaries, to a lexicon of common English words and domain-related non-gene terms, and we compared different data sources in terms of size of extracted dictionaries and overlap of synonyms between those. The study shows that the number of genes/proteins and synonyms covered in individual databases varies significantly for a given organism, and that the degree of ambiguity of synonyms varies significantly between different organisms. Furthermore, it shows that, despite considerable efforts of co-curation, the overlap of synonyms in different data sources is rather moderate and that the degree of ambiguity of gene names with common English words and domain-related non-gene terms varies depending on the considered organism. CONCLUSION: In conclusion, these results indicate that the combination of data contained in different databases allows the generation of gene and protein name dictionaries that contain significantly more used names than dictionaries obtained from individual data sources. Furthermore, curation of combined dictionaries considerably increases size and decreases ambiguity. The entries of the curated synonym dictionary are available for manual querying, editing, and PubMed- or Google-search via the ProThesaurus-wiki. For automated querying via custom software, we offer a web service and an exemplary client application
    • …
    corecore