552 research outputs found
When resources collide: Towards a theory of coincidence in information spaces
This paper is an attempt to lay out foundations for a general theory of coincidence in information spaces such as the World Wide Web, expanding on existing work on bursty structures in document streams and information cascades. We elaborate on the hypothesis that every resource that is published in an information space, enters a temporary interaction with another resource once a unique explicit or implicit reference between the two is found. This thought is motivated by Erwin Shroedingers notion of entanglement between quantum systems. We present a generic information cascade model that exploits only the temporal order of information sharing activities, combined with inherent properties of the shared information resources. The approach was applied to data from the world's largest online citizen science platform Zooniverse and we report about findings of this case study
Reduction of voluntary dehydration during effort in hot environments
During an experimental marching trip the daily positive fluid balance was preserved by providing a wide choice of beverages during the hours of the day. It was found that the beverage most suitable for drinking in large quantities during periods of effort was a cold drink with sweetened (citrus) fruit taste. Carbonated drinks, including beer, but milk also, were found unsuitable for this purpose
Epidemic processes in complex networks
In recent years the research community has accumulated overwhelming evidence
for the emergence of complex and heterogeneous connectivity patterns in a wide
range of biological and sociotechnical systems. The complex properties of
real-world networks have a profound impact on the behavior of equilibrium and
nonequilibrium phenomena occurring in various systems, and the study of
epidemic spreading is central to our understanding of the unfolding of
dynamical processes in complex networks. The theoretical analysis of epidemic
spreading in heterogeneous networks requires the development of novel
analytical frameworks, and it has produced results of conceptual and practical
relevance. A coherent and comprehensive review of the vast research activity
concerning epidemic processes is presented, detailing the successful
theoretical approaches as well as making their limits and assumptions clear.
Physicists, mathematicians, epidemiologists, computer, and social scientists
share a common interest in studying epidemic spreading and rely on similar
models for the description of the diffusion of pathogens, knowledge, and
innovation. For this reason, while focusing on the main results and the
paradigmatic models in infectious disease modeling, the major results
concerning generalized social contagion processes are also presented. Finally,
the research activity at the forefront in the study of epidemic spreading in
coevolving, coupled, and time-varying networks is reported.Comment: 62 pages, 15 figures, final versio
Probabilistic reasoning with a bayesian DNA device based on strand displacement
We present a computing model based on the DNA strand displacement technique which performs Bayesian inference. The model will take single stranded DNA as input data, representing the presence or absence of a specific molecular signal (evidence). The program logic encodes the prior probability of a disease and the conditional probability of a signal given the disease playing with a set of different DNA complexes and their ratios. When the input and program molecules interact, they release a different pair of single stranded DNA species whose relative proportion represents the application of Bayes? Law: the conditional probability of the disease given the signal. The models presented in this paper can empower the application of probabilistic reasoning in genetic diagnosis in vitro
Biomedical term mapping databases
Longer words and phrases are frequently mapped onto a shorter form such as abbreviations or acronyms for efficiency of communication. These abbreviations are pervasive in all aspects of biology and medicine and as the amount of biomedical literature grows, so does the number of abbreviations and the average number of definitions per abbreviation. Even more confusing, different authors will often abbreviate the same word/phrase differently. This ambiguity impedes our ability to retrieve information, integrate databases and mine textual databases for content. Efforts to standardize nomenclature, especially those doing so retrospectively, need to be aware of different abbreviatory mappings and spelling variations. To address this problem, there have been several efforts to develop computer algorithms to identify the mapping of terms between short and long form within a large body of literature. To date, four such algorithms have been applied to create online databases that comprehensively map biomedical terms and abbreviations within MEDLINE: ARGH (http://lethargy.swmed.edu/ARGH/argh.asp), the Stanford Biomedical Abbreviation Server (http://bionlp.stanford.edu/abbreviation/), AcroMed (http://medstract.med.tufts.edu/acro1.1/index.htm) and SaRAD (http://www.hpl.hp.com/research/idl/projects/abbrev.html). In addition to serving as useful computational tools, these databases serve as valuable references that help biologists keep up with an ever-expanding vocabulary of terms
Recommended from our members
Day-to-day associations between testosterone, sexual desire and courtship efforts in young men
Testosterone plays important roles in reproductive behaviour in many species. Despite a common belief that testosterone regulates fluctuations in human sexual desire, there is little direct evidence that relates within-person changes in natural testosterone production to within-person changes in sexual desire. Here, we measured daily salivary testosterone concentrations from 41 adult men for one month, along with daily self-reports of sexual desire (n = 759 observations for the main analyses). We analysed concurrent relationships between within-person changes in testosterone and desire, and also lagged relationships that were analysed using a continuous-time modelling framework. We found no evidence for significant, positive relationships between testosterone and desire, which argues against the notion that day-to-day changes in eugonadal men’s baseline testosterone regulates changes in their sexual desire. However, additional analyses provided preliminary evidence for a positive relationship between testosterone and self-reported courtship effort, particularly on days when single participants interacted with potential romantic partners. Our findings add original evidence regarding day-to-day associations between testosterone and desire, and suggest that testosterone above minimum threshold concentrations does not increase sexual desire. We propose that the evolved functions of testosterone in human males are more closely associated with courtship efforts than with sexual desire
SESAME: Semantic Editing of Scenes by Adding, Manipulating or Erasing Objects
Recent advances in image generation gave rise to powerful tools for semantic
image editing. However, existing approaches can either operate on a single
image or require an abundance of additional information. They are not capable
of handling the complete set of editing operations, that is addition,
manipulation or removal of semantic concepts. To address these limitations, we
propose SESAME, a novel generator-discriminator pair for Semantic Editing of
Scenes by Adding, Manipulating or Erasing objects. In our setup, the user
provides the semantic labels of the areas to be edited and the generator
synthesizes the corresponding pixels. In contrast to previous methods that
employ a discriminator that trivially concatenates semantics and image as an
input, the SESAME discriminator is composed of two input streams that
independently process the image and its semantics, using the latter to
manipulate the results of the former. We evaluate our model on a diverse set of
datasets and report state-of-the-art performance on two tasks: (a) image
manipulation and (b) image generation conditioned on semantic labels
Case Report Protein-Loosing Entropathy Induced by Unique Combination of CMV and HP in an Immunocompetent Patient
Protein-losing gastroenteropathies are characterized by an excessive loss of serum proteins into the gastrointestinal tract, resulting in hypoproteinemia (detected as hypoalbuminemia), edema, and, in some cases, pleural and pericardial effusions. Protein-losing gastroenteropathies can be caused by a diverse group of disorders and should be suspected in a patient with hypoproteinemia in whom other causes, such as malnutrition, proteinuria, and impaired liver protein synthesis, have been excluded. In this paper, we present a case of protein-losing enteropathy in a 22-year-old immunocompetent male with a coinfection of CMV and Hp
GAN-based multiple adjacent brain MRI slice reconstruction for unsupervised alzheimer’s disease diagnosis
Unsupervised learning can discover various unseen diseases, relying on
large-scale unannotated medical images of healthy subjects. Towards this,
unsupervised methods reconstruct a single medical image to detect outliers
either in the learned feature space or from high reconstruction loss. However,
without considering continuity between multiple adjacent slices, they cannot
directly discriminate diseases composed of the accumulation of subtle
anatomical anomalies, such as Alzheimer's Disease (AD). Moreover, no study has
shown how unsupervised anomaly detection is associated with disease stages.
Therefore, we propose a two-step method using Generative Adversarial
Network-based multiple adjacent brain MRI slice reconstruction to detect AD at
various stages: (Reconstruction) Wasserstein loss with Gradient Penalty + L1
loss---trained on 3 healthy slices to reconstruct the next 3
ones---reconstructs unseen healthy/AD cases; (Diagnosis) Average/Maximum loss
(e.g., L2 loss) per scan discriminates them, comparing the reconstructed/ground
truth images. The results show that we can reliably detect AD at a very early
stage with Area Under the Curve (AUC) 0.780 while also detecting AD at a late
stage much more accurately with AUC 0.917; since our method is fully
unsupervised, it should also discover and alert any anomalies including rare
disease.Comment: 10 pages, 4 figures, Accepted to Lecture Notes in Bioinformatics
(LNBI) as a volume in the Springer serie
- …
