5,375 research outputs found

    Absence of Cooper-type bound states in three- and few-electron systems

    Full text link
    It is shown that the appearance of a fixed-point singularity in the kernel of the two-electron Cooper problem is responsible for the formation of the Cooper pair for an arbitrarily weak attractive interaction between two electrons. This singularity is absent in the problem of three and few superconducting electrons at zero temperature on the full Fermi sea. Consequently, such three- and few-electron systems on the full Fermi sea do not form Cooper-type bound states for an arbitrarily weak attractive pair interaction.Comment: 10 pages. Accepted in European Physical Journal

    Relativistic three-particle dynamical equations: I. Theoretical development

    Full text link
    Starting from the two-particle Bethe-Salpeter equation in the ladder approximation and integrating over the time component of momentum, we rederive three dimensional scattering integral equations satisfying constraints of relativistic unitarity and covariance, first derived by Weinberg and by Blankenbecler and Sugar. These two-particle equations are shown to be related by a transformation of variables. Hence we show how to perform and relate identical dynamical calculation using these two equations. Similarly, starting from the Bethe-Salpeter-Faddeev equation for the three-particle system and integrating over the time component of momentum, we derive several three dimensional three-particle scattering equations satisfying constraints of relativistic unitarity and covariance. We relate two of these three-particle equations by a transformation of variables as in the two-particle case. The three-particle equations we derive are very practical and suitable for performing relativistic scattering calculations.Comment: 30 pages, Report # IFT P.070/93, [Text in Latex, e-mail: [email protected] ; FAX: 55-11-288-8224

    Dynamics of gap solitons in a dipolar Bose-Einstein condensate on a three-dimensional optical lattice

    Full text link
    We suggest and study the stable disk- and cigar-shaped gap solitons of a dipolar Bose-Einstein condensate of 52^{52}Cr atoms localized in the lowest band gap by three optical-lattice (OL) potentials along orthogonal directions. The one-dimensional version of these solitons of experimental interest confined by an OL along the dipole moment direction and harmonic traps in transverse directions is also considered. Important dynamics of (i) breathing oscillation of a gap soliton upon perturbation and (ii) dragging of a gap soliton by a moving lattice along axial zz direction demonstrates the stability of gap solitons. A movie clip of dragging of three-dimensional gap soliton is included.Comment: To see the dragging movie clip please download sourc

    Neutron19-^{19}C scattering near an Efimov state

    Full text link
    The low-energy neutron19-^{19}C scattering in a neutron-neutron-core model is studied with large scattering lengths near the conditions for the appearance of an Efimov state. We show that the real part of the elastic ss-wave phase-shift (δ0R\delta_0^R) presents a zero, or a pole in kcotδ0R k\cot\delta_0^{R}, when the system has an Efimov excited or virtual state. More precisely the pole scales with the energy of the Efimov state (bound or virtual). We perform calculations in the limit of large scattering lengths, disregarding the interaction range, within a renormalized zero-range approach using subtracted equations. It is also presented a brief discussion of these findings in the context of ultracold atom physics with tunable scattering lengths

    Quantum scattering in one dimension

    Get PDF
    A self-contained discussion of nonrelativistic quantum scattering is presented in the case of central potentials in one space dimension, which will facilitate the understanding of the more complex scattering theory in two and three dimensions. The present discussion illustrates in a simple way the concept of partial-wave decomposition, phase shift, optical theorem and effective-range expansion.Comment: 8 page

    Black soliton in a quasi-one-dimensional trapped fermion-fermion mixture

    Full text link
    Employing a time-dependent mean-field-hydrodynamic model we study the generation of black solitons in a degenerate fermion-fermion mixture in a cigar-shaped geometry using variational and numerical solutions. The black soliton is found to be the first stationary vibrational excitation of the system and is considered to be a nonlinear continuation of the vibrational excitation of the harmonic oscillator state. We illustrate the stationary nature of the black soliton, by studying different perturbations on it after its formation.Comment: 7 pages, 10 figure
    corecore