21 research outputs found

    Spine neck plasticity regulates compartmentalization of synapses

    Get PDF
    Dendritic spines have been proposed to transform synaptic signals through chemical and electrical compartmentalization. However, the quantitative contribution of spine morphology to synapse compartmentalization and its dynamic regulation are still poorly understood. We used time-lapse super-resolution stimulated emission depletion (STED) imaging in combination with fluorescence recovery after photobleaching (FRAP) measurements, two-photon glutamate uncaging, electrophysiology and simulations to investigate the dynamic link between nanoscale anatomy and compartmentalization in live spines of CA1 neurons in mouse brain slices. We report a diversity of spine morphologies that argues against common categorization schemes and establish a close link between compartmentalization and spine morphology, wherein spine neck width is the most critical morphological parameter. We demonstrate that spine necks are plastic structures that become wider and shorter after long-term potentiation. These morphological changes are predicted to lead to a substantial drop in spine head excitatory postsynaptic potential (EPSP) while preserving overall biochemical compartmentalization

    Transfer of SCN1A to the brain of adolescent mouse model of Dravet syndrome improves epileptic, motor, and behavioral manifestations

    Get PDF
    Dravet syndrome is a genetic encephalopathy characterized by severe epilepsy combined with motor, cognitive, and behavioral abnormalities. Current antiepileptic drugs achieve only partial control of seizures and provide little benefit on the patient’s neurological development. In >80% of cases, the disease is caused by haploinsufficiency of the SCN1A gene, which encodes the alpha subunit of the Nav1.1 voltage-gated sodium channel. Novel therapies aim to restore SCN1A expression in order to address all disease manifestations. We provide evidence that a high-capacity adenoviral vector harboring the 6-kb SCN1A cDNA is feasible and able to express functional Nav1.1 in neurons. In vivo, the best biodistribution was observed after intracerebral injection in basal ganglia, cerebellum, and prefrontal cortex. SCN1A A1783V knockin mice received the vector at 5 weeks of age, when most neurological alterations were present. Animals were protected from sudden death, and the epileptic phenotype was attenuated. Improvement of motor performance and interaction with the environment was observed. In contrast, hyperactivity persisted, and the impact on cognitive tests was variable (success in novel object recognition and failure in Morris water maze tests). These results provide proof of concept for gene supplementation in Dravet syndrome and indicate new directions for improvement

    Optical Dissection of Neural Circuits Responsible for Drosophila Larval Locomotion with Halorhodopsin

    Get PDF
    Halorhodopsin (NpHR), a light-driven microbial chloride pump, enables silencing of neuronal function with superb temporal and spatial resolution. Here, we generated a transgenic line of Drosophila that drives expression of NpHR under control of the Gal4/UAS system. Then, we used it to dissect the functional properties of neural circuits that regulate larval peristalsis, a continuous wave of muscular contraction from posterior to anterior segments. We first demonstrate the effectiveness of NpHR by showing that global and continuous NpHR-mediated optical inhibition of motor neurons or sensory feedback neurons induce the same behavioral responses in crawling larvae to those elicited when the function of these neurons are inhibited by Shibirets, namely complete paralyses or slowed locomotion, respectively. We then applied transient and/or focused light stimuli to inhibit the activity of motor neurons in a more temporally and spatially restricted manner and studied the effects of the optical inhibition on peristalsis. When a brief light stimulus (1–10 sec) was applied to a crawling larva, the wave of muscular contraction stopped transiently but resumed from the halted position when the light was turned off. Similarly, when a focused light stimulus was applied to inhibit motor neurons in one or a few segments which were about to be activated in a dissected larva undergoing fictive locomotion, the propagation of muscular constriction paused during the light stimulus but resumed from the halted position when the inhibition (>5 sec) was removed. These results suggest that (1) Firing of motor neurons at the forefront of the wave is required for the wave to proceed to more anterior segments, and (2) The information about the phase of the wave, namely which segment is active at a given time, can be memorized in the neural circuits for several seconds

    Functional Integration of Grafted Neural Stem Cell-Derived Dopaminergic Neurons Monitored by Optogenetics in an In Vitro Parkinson Model

    Get PDF
    Intrastriatal grafts of stem cell-derived dopamine (DA) neurons induce behavioral recovery in animal models of Parkinson's disease (PD), but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D2 autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD

    Monocyte expression and soluble levels of the haemoglobin receptor (CD163/sCD163) and the mannose receptor (MR/sMR) in septic and critically ill non-septic ICU patients.

    No full text
    BACKGROUND: The diagnosis of sepsis is challenging and there is an unmet need for sensitive and specific diagnostic and prognostic biomarkers. Following activation of macrophages and monocytes, the haptoglobin-haemoglobin receptor (CD163) and the mannose receptor (MR) are shed into the circulation (sCD163 and sMR). OBJECTIVE: We investigated monocyte expression of CD163 and MR, and levels of sCD163 and sMR in septic and non-septic patients, and in healthy controls. We hypothesised that these receptors are elevated during sepsis and can be used diagnostic and prognostic. METHODS: Twenty-one patients with severe sepsis or septic shock and 15 critically ill non-septic patients were included in this prospective observational study at three ICUs at Aarhus University Hospital and Randers Regional Hospital, Denmark. Fifteen age- and gender-matched healthy volunteers served as controls. Levels of sCD163 and sMR were measured using a sandwich ELISA and monocyte expression of CD163 and MR was evaluated by flow cytometry during the first four days of ICU stay. The diagnostic and prognostic values of the receptors were assessed using AUROC curves. RESULTS: At ICU admission and during the observation period, monocyte expression of CD163 and levels of sCD163 and sMR were significantly higher in septic patients compared with non-septic patients and healthy controls (p<0.01 for all comparisons). Monocytes did not express MR. The diagnostic values estimated by AUROC were 1.00 for sMR, 0.95 for sCD163, 0.87 for CRP, and 0.75 for monocyte-bound CD163. Among the septic patients, monocyte expression of CD163 was higher in non-survivors compared with survivors at ICU admission (p = 0.02) and during the observation period (p = 0.006). The prognostic value of monocyte-bound CD163 estimated by AUROC at ICU admission was 0.82. CONCLUSION: The macrophage-specific markers CD163, sCD163, and sMR are increased in septic patients. Particularly sMR is a promising new biomarker of sepsis

    Levels of sCD163, sMR and the expression of monocyte-bound CD163 during the four-day observation period.

    No full text
    <p>A-C: At ICU admission and during the four-day observation period, expression of monocyte-bound CD163 (Panel A), sCD163 (Panel B), and sMR (Panel C) was significantly higher in septic patients compared with non-septic patients and healthy controls. The x-axis represents time and the y-axis represents the expression or level of each potential biomarker. Dots represent the median, bars represent the interquartile range.</p

    Patient demographics.

    No full text
    <p>APACHE II Acute Physiology And Chronic Health Evaluation II, SOFA Sequential Organ Failure Assessment, NIV Non-invasive ventilation.</p

    Receiver operating characteristic curve analysis and the ability to discriminate between survivors and non-survivors among the septic patients at ICU admission.

    No full text
    <p>Area under the receiver operating characteristic curve (AUROC) is shown for monocyte-bound CD163, sCD163, sMR, and plasma CRP. Numbers in parentheses are 95% confidence intervals.</p

    SOFA score and biochemical variables during the study period.

    No full text
    <p>SOFA Sequential Organ Failure Assessment score, WBC white blood cell, CRP C-reactive protein. Data are shown as the median with Inter-quartile range (IQR).</p>1<p>Significant compared with healthy controls (Wilcoxon signed rank-sum test).</p>2<p>Significant compared with non-septic patients (Wilcoxon signed rank-sum test).</p>3<p>Levels differ significantly between septic and non-septic patients during the observation period (two-way repeated measures ANOVA).</p>4<p>Significant time/group interaction between septic and non-septic patients during the observation period (two-way repeated measures ANOVA).</p
    corecore