96 research outputs found

    Indoor Air Pollution and Delayed Measles Vaccination Increase the Risk of Severe Pneumonia in Children: Results from a Case-Control Study in Mwanza, Tanzania.

    Get PDF
    BACKGROUND: Mortality due to severe pneumonia during childhood in resource-constrained settings is high, but data to provide basis for interventions to improve survival are limited. The objective of this study was to determine the risk factors for severe pneumonia in children aged under five years old in Mwanza, Tanzania. METHODS: We conducted a case-control study of children aged 2 to 59 months at Sekou-Toure regional hospital in Mwanza City, north-western, Tanzania from May 2013 to March 2014. Cases were children with severe pneumonia and controls were children with other illnesses. Data on demography, social-economical status, nutritional status, environmental factors, vaccination status, vitamin A supplementation and deworming, and nasopharyngeal carriage were collected and analysed using logistic regression. RESULTS: 117 patients were included in the study. Of these, 45 were cases and 72 controls. Cases were younger than controls, but there were no differences in social-economic or nutritional status between the two groups. In multiple regression, we found that an increased risk of severe pneumonia was associated with cooking indoors (OR 5.5, 95% CI: 1.4, 22.1), and delayed measles vaccination (OR 3.9, 95% CI: 1.1, 14.8). The lack of vitamin A supplementation in the preceding six month and Enterobacter spp nasopharyngeal carriage were not associated with higher risk of severe pneumonia. Age ≥24 months (OR 0.2, 95% CI: 0.04, 0.8) and not receiving antibiotics before referral (OR 0.3, 95% CI 0.1, 0.9) were associated with lower risk for severe pneumonia. CONCLUSIONS: Indoor air pollution and delayed measles vaccination increase the risk for severe pneumonia among children aged below five years. Interventions to reduce indoor air pollution and to promote timely administration of measles vaccination are urgently needed to reduce the burden of severe pneumonia in children in Tanzania

    Systematic Surveillance Detects Multiple Silent Introductions and Household Transmission of Methicillin-Resistant Staphylococcus aureus USA300 in the East of England.

    Get PDF
    BACKGROUND: The spread of USA300 methicillin-resistant Staphylococcus aureus (MRSA) across the United States resulted in an epidemic of infections. In Europe, only sporadic cases or small clusters of USA300 infections are described, and its prevalence in England is unknown. We conducted prospective surveillance for USA300 in the east of England. METHODS: We undertook a 12-month prospective observational cohort study of all individuals with MRSA isolated from community and hospital samples submitted to a microbiology laboratory. At least 1 MRSA isolate from each individual underwent whole-genome sequencing. USA300 was identified on the basis of sequence analysis, and phylogenetic comparisons were made between these and USA300 genomes from the United States. RESULTS: Between April 2012 and April 2013, we sequenced 2283 MRSA isolates (detected during carriage screening and in clinical samples) from 1465 individuals. USA300 was isolated from 24 cases (1.6%). Ten cases (42%) had skin and soft tissue infection, and 2 cases had invasive disease. Phylogenetic analyses identified multiple introductions and household transmission of USA300. CONCLUSIONS: Use of a diagnostic laboratory as a sentinel for surveillance has identified repeated introductions of USA300 in eastern England in 2012-2013, with evidence for limited transmission. Our results show how systematic surveillance could provide an early warning of strain emergence and dissemination.This work was supported by grants from the UK Clinical Research Collaboration Translational Infection Research Initiative, and the Medical Research Council (Grant Number G1000803) with contributions to the Grant from the Biotechnology and Biological Sciences Research Council, the National Institute for Health Research on behalf of the Department of Health, and the Chief Scientist Office of the Scottish Government Health Directorate (to Prof. Peacock); by a Healthcare Infection Society Major Research Grant (to Prof. Peacock), and by Wellcome Trust grant number 098051 awarded to the Wellcome Trust Sanger Institute. MST is a Wellcome Trust Clinical PhD Fellow. MET is a Clinician Scientist Fellow, supported by the Academy of Medical Sciences and the Health Foundation, and by the National Institute for Health Research Cambridge Biomedical Research Centre.This is the final version of the article. It first appeared from Oxford University Press via https://doi.org/10.1093/infdis/jiw16

    Whole-genome sequencing reveals transmission of vancomycin-resistant Enterococcus faecium in a healthcare network.

    Get PDF
    BACKGROUND: Bacterial whole-genome sequencing (WGS) has the potential to identify reservoirs of multidrug-resistant organisms and transmission of these pathogens across healthcare networks. We used WGS to define transmission of vancomycin-resistant enterococci (VRE) within a long-term care facility (LTCF), and between this and an acute hospital in the United Kingdom (UK). METHODS: A longitudinal prospective observational study of faecal VRE carriage was conducted in a LTCF in Cambridge, UK. Stool samples were collected at recruitment, and then repeatedly until the end of the study period, discharge or death. Selective culture media were used to isolate VRE, which were subsequently sequenced and analysed. We also analysed the genomes of 45 Enterococcus faecium bloodstream isolates collected at Cambridge University Hospitals NHS Foundation Trust (CUH). RESULTS: Forty-five residents were recruited during a 6-month period in 2014, and 693 stools were collected at a frequency of at least 1 week apart. Fifty-one stool samples from 3/45 participants (7 %) were positive for vancomycin-resistant E. faecium. Two residents carried multiple VRE lineages, and one carried a single VRE lineage. Genome analyses based on single nucleotide polymorphisms (SNPs) in the core genome indicated that VRE carried by each of the three residents were unrelated. Participants had extensive contact with the local healthcare network. We found that VRE genomes from LTCF residents and hospital-associated bloodstream infection were interspersed throughout the phylogenetic tree, with several instances of closely related VRE strains from the two settings. CONCLUSIONS: A proportion of LTCF residents are long-term carriers of VRE. Evidence for genetic relatedness between these and VRE associated with bloodstream infection in a nearby acute NHS Trust indicate a shared bacterial population.We gratefully acknowledge the contribution of the staff at the LTCF in sample collection, and thank the patients who agreed to participate. We thank Kirsty Ambridge and Angela Kidney for technical assistance. We are grateful for assistance from the library construction, sequencing and core informatics teams at the Wellcome Trust Sanger Institute. This publication presents independent research supported by the Health Innovation Challenge Fund (WT098600, HICF-T5-342), a parallel funding partnership between the Department of Health and Wellcome Trust. The views expressed in this publication are those of the author(s) and not necessarily those of the Department of Health or Wellcome Trust. MET is a Clinician Scientist Fellow supported by the Academy of Medical Sciences, The Health Foundation and the NIHR Cambridge Biomedical Research Centre.This is the final version of the article. It was first available from BioMed Central via http://dx.doi.org/10.1186/s13073-015-0259-

    Within-host evolution of Enterococcus faecium during longitudinal carriage and transition to bloodstream infection in immunocompromised patients.

    Get PDF
    BACKGROUND: Enterococcus faecium is a leading cause of hospital-acquired infection, particularly in the immunocompromised. Here, we use whole genome sequencing of E. faecium to study within-host evolution and the transition from gut carriage to invasive disease. METHODS: We isolated and sequenced 180 E. faecium from four immunocompromised patients who developed bloodstream infection during longitudinal surveillance of E. faecium in stool and their immediate environment. RESULTS: A phylogenetic tree based on single nucleotide polymorphisms (SNPs) in the core genome of the 180 isolates demonstrated several distinct clones. This was highly concordant with the population structure inferred by Bayesian methods, which contained four main BAPS (Bayesian Analysis of Population Structure) groups. The majority of isolates from each patient resided in a single group, but all four patients also carried minority populations in stool from multiple phylogenetic groups. Bloodstream isolates from each case belonged to a single BAPS group, which differed in all four patients. Analysis of 87 isolates (56 from blood) belonging to a single BAPS group that were cultured from the same patient over 54 days identified 30 SNPs in the core genome (nine intergenic, 13 non-synonymous, eight synonymous), and 250 accessory genes that were variably present. Comparison of these genetic variants in blood isolates versus those from stool or environment did not identify any variants associated with bloodstream infection. The substitution rate for these isolates was estimated to be 128 (95% confidence interval 79.82 181.77) mutations per genome per year, more than ten times higher than previous estimates for E. faecium. Within-patient variation in vancomycin resistance associated with vanA was common and could be explained by plasmid loss, or less often by transposon loss. CONCLUSIONS: These findings demonstrate the diversity of E. faecium carriage by individual patients and significant within-host diversity of E. faecium, but do not provide evidence for adaptive genetic variation associated with invasion

    Longitudinal genomic surveillance of multidrug-resistant Escherichia coli carriage in a long-term care facility in the United Kingdom.

    Get PDF
    BACKGROUND: Residents of long-term care facilities (LTCF) may have high carriage rates of multidrug-resistant pathogens, but are not currently included in surveillance programmes for antimicrobial resistance or healthcare-associated infections. Here, we describe the value derived from a longitudinal epidemiological and genomic surveillance study of drug-resistant Escherichia coli in a LTCF in the United Kingdom (UK). METHODS: Forty-five of 90 (50%) residents were recruited and followed for six months in 2014. Participants were screened weekly for carriage of extended-spectrum beta-lactamase (ESBL) producing E. coli. Participants positive for ESBL E. coli were also screened for ESBL-negative E. coli. Phenotypic antibiotic susceptibility of E. coli was determined using the Vitek2 instrument and isolates were sequenced on an Illumina HiSeq2000 instrument. Information was collected on episodes of clinical infection and antibiotic consumption. RESULTS: Seventeen of 45 participants (38%) carried ESBL E. coli. Twenty-three of the 45 participants (51%) had 63 documented episodes of clinical infection treated with antibiotics. Treatment with antibiotics was associated with higher risk of carrying ESBL E. coli. ESBL E. coli was mainly sequence type (ST)131 (16/17, 94%). Non-ESBL E. coli from these 17 cases was more genetically diverse, but ST131 was found in eight (47%) cases. Whole-genome analysis of 297 ST131 E. coli from the 17 cases demonstrated highly related strains from six participants, indicating acquisition from a common source or person-to-person transmission. Five participants carried highly related strains of both ESBL-positive and ESBL-negative ST131. Genome-based comparison of ST131 isolates from the LTCF study participants with ST131 associated with bloodstream infection at a nearby acute hospital and in hospitals across England revealed sharing of highly related lineages between the LTCF and a local hospital. CONCLUSIONS: This study demonstrates the power of genomic surveillance to detect multidrug-resistant pathogens and confirm their connectivity within a healthcare network

    Duration of exposure to multiple antibiotics is associated with increased risk of VRE bacteraemia: a nested case-control study.

    Get PDF
    BACKGROUND: VRE bacteraemia has a high mortality and continues to defy control. Antibiotic risk factors for VRE bacteraemia have not been adequately defined. We aimed to determine the risk factors for VRE bacteraemia focusing on duration of antibiotic exposure. METHODS: A retrospective matched nested case-control study was conducted amongst hospitalized patients at Cambridge University Hospitals NHS Foundation Trust (CUH) from 1 January 2006 to 31 December 2012. Cases who developed a first episode of VRE bacteraemia were matched 1:1 to controls by length of stay, year, specialty and ward type. Independent risk factors for VRE bacteraemia were evaluated using conditional logistic regression. RESULTS: Two hundred and thirty-five cases were compared with 220 controls. Duration of exposure to parenteral vancomycin, fluoroquinolones and meropenem was independently associated with VRE bacteraemia. Compared with patients with no exposure to vancomycin, those who received courses of 1-3 days, 4-7 days or >7 days had a stepwise increase in risk of VRE bacteraemia [conditional OR (cOR) 1.2 (95% CI 0.4-3.8), 3.8 (95% CI 1.2-11.7) and 6.6 (95% CI 1.9-22.8), respectively]. Other risk factors were: presence of a central venous catheter (CVC) [cOR 8.7 (95% CI 2.6-29.5)]; neutropenia [cOR 15.5 (95% CI 4.2-57.0)]; hypoalbuminaemia [cOR 8.5 (95% CI 2.4-29.5)]; malignancy [cOR 4.4 (95% CI 1.6-12.0)]; gastrointestinal disease [cOR 12.4 (95% CI 4.2-36.8)]; and hepatobiliary disease [cOR 7.9 (95% CI 2.1-29.9)]. CONCLUSIONS: Longer exposure to vancomycin, fluoroquinolones or meropenem was associated with VRE bacteraemia. Antimicrobial stewardship interventions targeting high-risk antibiotics are required to complement infection control procedures against VRE bacteraemia

    Longitudinal genomic surveillance of MRSA in the UK reveals transmission patterns in hospitals and the community.

    Get PDF
    Genome sequencing has provided snapshots of the transmission of methicillin-resistant Staphylococcus aureus (MRSA) during suspected outbreaks in isolated hospital wards. Scale-up to populations is now required to establish the full potential of this technology for surveillance. We prospectively identified all individuals over a 12-month period who had at least one MRSA-positive sample processed by a routine diagnostic microbiology laboratory in the East of England, which received samples from three hospitals and 75 general practitioner (GP) practices. We sequenced at least 1 MRSA isolate from 1465 individuals (2282 MRSA isolates) and recorded epidemiological data. An integrated epidemiological and phylogenetic analysis revealed 173 transmission clusters containing between 2 and 44 cases and involving 598 people (40.8%). Of these, 118 clusters (371 people) involved hospital contacts alone, 27 clusters (72 people) involved community contacts alone, and 28 clusters (157 people) had both types of contact. Community- and hospital-associated MRSA lineages were equally capable of transmission in the community, with instances of spread in households, long-term care facilities, and GP practices. Our study provides a comprehensive picture of MRSA transmission in a sampled population of 1465 people and suggests the need to review existing infection control policy and practice

    Prospective genomic surveillance of methicillin-resistant Staphylococcus aureus (MRSA) associated with bloodstream infection, England, 1 October 2012 to 30 September 2013.

    Get PDF
    BackgroundMandatory reporting of methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections (BSI) has occurred in England for over 15years. Epidemiological information is recorded, but routine collection of isolates for characterisation has not been routinely undertaken. Ongoing developments in whole-genome sequencing (WGS) have demonstrated its value in outbreak investigations and for determining the spread of antimicrobial resistance and bacterial population structure. Benefits of adding genomics to routine epidemiological MRSA surveillance are unknown.AimTo determine feasibility and potential utility of adding genomics to epidemiological surveillance of MRSA.MethodsWe conducted an epidemiological and genomic survey of MRSA BSI in England over a 1-year period (1 October 2012--30 September 2013).ResultsDuring the study period, 903 cases of MRSA BSI were reported; 425 isolates were available for sequencing of which, 276 (65%) were clonal complex (CC) 22. Addition of 64 MRSA genomes from published outbreak investigations showed that the study genomes could provide context for outbreak isolates and supported cluster identification. Comparison to other MRSA genome collections demonstrated variation in clonal diversity achieved through different sampling strategies and identified potentially high-risk clones e.g. USA300 and local expansion of CC5 MRSA in South West England.ConclusionsWe demonstrate the potential utility of combined epidemiological and genomic MRSA BSI surveillance to determine the national population structure of MRSA, contextualise previous MRSA outbreaks, and detect potentially high-risk lineages. These findings support the integration of epidemiological and genomic surveillance for MRSA BSI as a step towards a comprehensive surveillance programme in England.This work was supported by grants from the UK Clinical Research Collaboration Translational Infection Research Initiative, and the Medical Research Council (Grant Number G1000803) with contributions to the Grant from the Biotechnology and Biological Sciences Research Council, the National Institute for Health Research on behalf of the Department of Health, and the Chief Scientist Office of the Scottish Government Health Directorate (to Prof. Peacock); and the Wellcome Trust (to Prof. Parkhill [Grant 098051], Prof. Peacock). MST is a Wellcome Trust Clinical PhD Fellow at the University of Cambridge. MET is a Clinician Scientist Fellow, supported by the Academy of Medical Sciences and the Health Foundation, and by the National Institute for Health Research Cambridge Biomedical Research Centre. FC is supported by the Wellcome Trust (201344/Z/16/Z)
    • …
    corecore