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Abstract

Antimicrobial resistance (AMR) is a global public-health emergency, which threatens the advances made by modern medical

care over the past century. The World Health Organization has recently published a global priority list of antibiotic-resistant

bacteria, which includes extended-spectrum b-lactamase-producing Enterobacteriaceae and carbapenemase-producing

Enterobacteriaceae. In this review, we highlight the mechanisms of resistance and the genomic epidemiology of these

organisms, and the impact of AMR.

INTRODUCTION

The development and introduction of antimicrobials in
the 20th century has transformed the delivery of modern
medical care. Yet, this ‘antibiotic golden-age’ is ending,
threatened by rising rates of antimicrobial resistance
(AMR) globally. Enterobacteriaceae, a family encompass-
ing many clinically important bacterial species, exhibits
rising levels of AMR. Infection with either extended-
spectrum b-lactamase-producing Enterobacteriaceae
(ESBL-E) or carbapenemase-producing Enterobacteriaceae
(CPE) is associated with increased mortality rates, time to
effective therapy, length of stay and overall healthcare
costs [1–8]. The impact of the continued spread of AMR
could have repercussions in multiple sectors. In the
healthcare sector itself, patient deaths resulting from AMR
are projected to reach 10million annually by 2050, but
AMR will also cause losses in the trillions to global eco-
nomic output [9]. ESBL-E and CPE have spread globally
[10, 11], and technologies such as whole-genome sequenc-
ing (WGS) are providing detailed insights into their evolu-
tion and dissemination. The World Health Organization
has recently published a global priority pathogens list to
focus attention on the most significantly resistant patho-
gens. Enterobacteriaceae resistant to third-generation
cephalosporins (which includes ESBL-E) and Enterobacter-
iaceae resistant to carbapenems (CRE) are included within
the critical category of this list [12].

ESBL-E

The definition of multidrug resistance is variable [13], but
Enterobacteriaceae exhibiting resistance to b-lactams,
extended-spectrum b-lactams and third-generation cephalo-
sporins are commonly recognized as ESBL-E [11, 14].
Extended-spectrum b-lactamase (ESBL) mechanisms them-
selves are classified based on their molecular structure or func-
tional similarities [15, 16] (Table 1). Initially, ESBL-E were
predominantly associated with nosocomial outbreaks, with
resistance arising from point mutations in plasmid-mediated
enzymes such as TEM-1, TEM-2, SHV-1 and OXA-10 [14].
CTX-M enzymes are now predominant. They arose via multi-
ple escape events of chromosomal b-lactamase-encoding
genes (blaklu) from Kluyvera spp. [17–19], supported by the
presence of transpositional units including ISEcp1 in CTX-M
groups 1, 2, 9 and 25 or ISCR1 in groups 2 and 9 [20]. Follow-
ing initial reports in Europe [21], South America [22] and
Japan [23], CTX-M enzymes have disseminated globally [24].
The group 1 enzyme CTX-M-15 is the most frequently identi-
fied, and dominates in many countries in Europe [25–30],
Asia [31, 32], Africa [33–35] and the USA [36, 37]. Additional
CTX-M mechanisms predominate in other locations. For
example, the group 9 enzyme CTX-M-14 is the leading mech-
anism in Escherichia coli in some areas of Korea [38] and
South America [39]. Until recently, CTX-M-14 was the major
mechanism across China [40–42], but a steady increase in
CTX-M-15 has also occurred [43–45].
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Genomic epidemiology demonstrates a number of wide-
spread lineages including sequence type (ST)131, ST38,
ST405 and ST10 in E. coli [46–49], and ST11, ST14 and
ST15 in Klebsiella pneumoniae [32, 50, 51]. ST131, an extra-
intestinal pathogenic E. coli, has undergone massive clonal
expansion and is strongly associated with the global dissem-
ination of the blaCTX-M-15 gene [47, 52, 53].

WGS has resolved ST131 into three clades, based upon the
presence of marker alleles for the type 1 fimbriae, fimH.
Clade A is associated with H41, clade B with H22 and H30
is associated with clade C [54–58]. A clade C sublineage is
the main driving force in the widespread dissemination of
CTX-M-15 and fluoroquinolone resistance (FQR) in ST131
[55, 56, 59]. Clade C is identifiable by FQR mutations in
gyrA (gyrA1AB) and parC (parC1aAB) genes, whereas
clades A and B are predominantly fluoroquinolone suscepti-
ble [55]. Further segregation of clade C into C1 and C2
occurs depending upon the presence of blaCTX-M-15 [56, 59].
Prior to the emergence of C1 and C2, acquisition of ele-
ments including the GI-pheV genomic island [54] and the
H30 allele [60] helped to prime ST131 for global success. C1
and C2 divergence and the development of FQR mutations
is estimated to have occurred in the late 1980s, consistent
with the introduction of fluoroquinolones for clinical use
[54]. CTX-M-14, CTX-M-27, CTX-M-19, CTX-M-24 and
CTX-M-55 have been identified in clade C [59]; however,
CTX-M-15 is almost entirely restricted to C2 [55, 56, 59].
Bayesian analysis based upon CTX-M variant distribution
also suggests blaCTX-M-15 emerged in ST131 following the
introduction of extended-spectrum cephalosporins into
clinical practice [59].

Plasmid movement between different species and lineages
represents a major source of AMR. blaCTX-M-15 in ST131 is
invariably associated with plasmids of incompatibility group
F (IncF) [25, 59, 61–63], although presence on IncN [64],
IncX [65] and IncI [66] plasmids has also been reported.

Specific IncF plasmids have been associated with C2 iso-

lates. This includes those with dual replicons, which compli-

cates plasmid typing and broadens the plasmid host range

[67, 68], additional AMR genes, gene cassettes, toxin/
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Table 1. Classification of b-lactamases

Adapted from Bush and Jacoby, 2010 [16].

Ambler molecular

class

Bush–Jacoby

group

Preferred substrate Inhibited Representative enzyme

A (serine

penicillinases)

2a Penicillins + PC1 from S. aureus

2b Penicillins, narrow-spectrum cephalosporins + TEM-1, TEM-2, SHV-1

2be Penicillins, narrow- spectrum and extended-

spectrum cephalosporins

+ SHV-2 to SHV-6, TEM-3 to TEM-26, CTX-Ms,

BEL-1, VEB-1, PER-1

2br Penicillins � TEM-30, SHV-72, SHV-19

2c Penicillins, carbenicillin + PSE-1

2e Extended-spectrum cephalosporins + FEC-1, CepA

2f Penicillins, cephalosporins, carbapenems +/� KPC-2, SME-1, NMC-A

B (MBLs) 3 Most b-lactams including carbapenems � IMP-1, VIM-1. NDM-1, CcrA and BcII, CphA, L1

C (cephalosporinases) 1 Cephalosporins � AmpC, CMY-2, ACT-1

D (oxacillinases) 2 Penicillins, cloxacillin +/� OXA-1, OXA-10

2de Extended-spectrum cephalosporins +/� OXA-11, OXA-15

2df Carbapenems +/� OXA-23, OXA-48
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antitoxin systems and stability mechanisms, all of which
may have influenced plasmid and clade success [57, 59, 69].
Architecture of the ST131 accessory genome, including plas-
mids, further supports clade-specific adaptations that have
likely contributed to the success of ST131 [70]. Multiple
clusters of variable accessory genome content within clade
C suggest that clonal expansions of stabilized accessory gene
profiles occur frequently, allowing generalization of this
highly structured clone [59, 70].

CPE

Rising ESBL-E prevalence correlates with increased carbape-
nem consumption [71, 72]; and appears to have driven the
emergence and spread of carbapenem resistance, especially
in Enterobacteriaceae [73]. Carbapenem resistance may be
caused by different mechanisms, including inducible
overexpression of chromosomal cephalosporinases, such as
AmpC, combined with porin loss [74]. More problematic,
however, is acquisition of carbapenemase genes via mobile
genetic elements. The most frequently identified mechanism
is the Ambler class A K. pneumoniae carbapenemase (KPC),
followed by class B metallo-b-lactamases (MBLs) such as
New Delhi MBL (NDM), and the class D OXA-type genes
[75] (Table 2, Fig. 1).

Since its identification in the USA in 1996 [76], KPC has
disseminated globally, has been reported to be present in
more than 50% of CPE in many countries, and in some
cases 100% of carbapenem-resistant K. pneumoniae [77–
84]. The majority of KPC-encoding genes are seen in
K. pneumoniae clonal group (CG)258, which includes the
successful lineages ST258 and ST11 [85–87]. An example of
this rapid dissemination can be seen in Greece. Following
the first KPC isolation in 2007 [88], KPC had spread to
most acute-care facilities within 2 years [89–92]. Most infec-
tions remain hospital-related, and associated with high
mortality rates [6, 93–95]. Many early cases were epidemio-
logically linked to travel to high prevalence locations [96–
101]; however, complex local transmission networks now
signify endemicity [102, 103]. More than 20 KPC variants
have been recognized, with blaKPC2 and blaKPC3 being the
most abundant [79, 83, 85, 104–106]. The gene is located in
isoforms of the 10 kb Tn4401 transposon [107], of the Tn3
transposon family [108, 109], and is associated with diverse
plasmids including IncFIIK [87], IncI [110], IncN [111],
IncL/M [112] and IncX [113].

Carbapenem-resistant lineages exhibit less diversity when
compared to carbapenem-susceptible Enterobacteriaceae
[114, 115] and lineages such as ST258 [112, 116, 117] and
ST11 [84, 106] demonstrate clonal spread. However, in con-
trast to the clonality of ESBL lineages and predominance of
a small number of globally disseminated epidemic lineages,
carbapenemase genes and plasmids show increased transfer-
ability within and between species, lineages, STs and
patients. This genetic mobility complicates the investigation
of outbreaks [114, 118–120]. This has been observed more
frequently in E. coli than other Enterobacteriaceae. The

spread of carbapenem resistance displays increased diversity
across STs, such as the large ST10 complex, rather than
strong association with existing global epidemic lineages
like ST131 [114, 121–123].

Non-clonal dissemination is also highly apparent in MBLs,
especially NDM. These class B enzymes, which include
NDM, GES, VIM and IMP, have also disseminated globally
[124]. MBLs hydrolyse all b-lactams, are not inhibited by b-
lactamase inhibitors, and their host bacteria often carry
additional resistance mechanisms such as ESBLs [125–128].
First identified in a Swedish patient repatriated from a New
Delhi hospital [129], most early cases had epidemiological
links to the Indian subcontinent [130–143]. Epidemic
spread and environmental contamination is evident in
India, Pakistan and Bangladesh [144, 145], whilst sporadic
cases or regional spread now occur on all continents [75, 84,
146, 147]. Clonal spread may occur during outbreaks [148,
149], but the high resolution of WGS enables tracking of
varying blaNDM-positive plasmids including IncA/C, IncF,
IncH, IncL/M, IncN and IncX types [113, 150–153], and
fluctuating genomic contexts flanking the blaNDM gene
among non-clonal isolates [128, 151, 154–156]. The blaNDM
gene is chimeric following fusion with the aminoglycoside
gene aphA6 and lies downstream of either entire, truncated
or remnants of the ISAba125 element [157].

blaVIM genes were originally described in Italian Pseudomo-
nas aeruginosa in the mid-1990s [158] and Enterobacteria-
ceae carrying blaVIM are predominantly reported in Europe
as occurring sporadically or in single hospital outbreaks
[147]. Sporadic cases are also seen in Africa, Taiwan, Mex-
ico, Saudi Arabia and the USA [159]. Since 2015, Hungary,
Italy and Spain have reported inter-regional spread; how-
ever, as with other CPE mechanisms, blaVIM is endemic in
Greece [147]. More than 48 variants have been identified
with blaVIM-1 and blaVIM-2 showing global dissemination
[159]. blaVIM genes are carried on variable class 1 integrons
within multiple plasmid Inc types [159–161].

blaIMP was the first described case of a transmissible carba-
penemase gene [162]; however, large-scale epidemiological
studies are lacking. The majority of blaIMP isolates originate
in the South Pacific [163] and Asia [164]. blaIMP is found
predominantly in K. pneumoniae, E. coli and Enterobacter
spp. on class 1 integrons [165]. Integrons and their gene
cassette combinations are variable and may show geograph-
ical correlations [164]. Despite being named due to imipe-
nem resistance, certain variants of blaIMP, particularly
blaIMP-6, actually exhibit low levels of imipenem resistance,
which may lead to misidentification, and contribute to the
lower detection rates of this mechanism [166, 167]. Geno-
mic evidence is now emerging of this mechanism moving
into epidemic Enterobacteriaceae such as E. coli ST131 [168,
169].

Finally, OXA-48 carbapenemases, first identified in 2001 in
Turkey, are also a public-health threat [170–172]. Owing to

their variable levels of carbapenem resistance, the spread of
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blaOXA-48 has been initially underestimated [173–175]. In

parallel to blaNDM and its Indian origins, blaOXA-48 was ini-

tially geographically linked to Turkey [171, 176]. However,

since 2015, multiple countries have inter-regional spread

and blaOXA-48 is endemic in Malta and Turkey [147]. Fur-

ther afield, extensively drug resistant (XDR) strains co-

harbouring blaNDM and blaOXA-48 have been identified in

the Middle East [177, 178], and blaOXA-48 strains have

emerged in Canada [173], Algeria [179] and Korea [180].

Shewanella spp. may be the natural progenitors of blaOXA-48
genes [181], which now predominantly appear in K. pneu-

moniae, E. coli and Enterobacter spp. [173, 182, 183].

blaOXA-48 is associated with the Tn1999 transposon, which

is composed of two copies of IS1999 bracketing the gene

[184, 185]. The majority of blaOXA-48 genes are associated

with Tn1999 or the variants Tn1999.2 [171], Tn1999.3 [186]

and Tn1999.4 [187]. Tn1999.4 is a mosaic of Tn1999 and a

second transposon, Tn2015, which additionally carries

blaCTX-M-15 [187]. In contrast to other CPE genes, dissemi-

nation of blaOXA-48 is associated with a single, successful

IncL/M plasmid into which the Tn1999 transposon has
inserted [173, 174, 178, 185, 187–193].

A variant of blaOXA-48, blaOXA-181, has also begun to dissem-
inate among Enterobacteriaceae and appears to be establish-
ing in the Indian subcontinent, South Africa and Singapore,
or in patients epidemiologically linked to these areas [194–
199]. Recently, the first cases of likely patient-to-patient
transmission have also been reported [200, 201]. blaOXA-181
has been identified on a non-self-conjugative ColE2 plasmid
in association with ISEcp1 and the Tn2013 transposon
[198]. Additionally, blaOXA-181 has been identified in the
same strains as blaNDM genes, reflecting its prevalence in
India [201, 202], and now in a conjugative plasmid [202],
suggesting widespread dissemination may occur in the
future.

THE CONTINUED THREAT OF AMR

The impact of antibiotic consumption is reflected in geo-
graphical variations of CPE and ESBL-E prevalence. Coun-
tries with high antibiotic consumption rates, such as

Fig. 1. Composite figure demonstrating the prevalence and characteristics of carbapenem resistance in Europe. (a) Percentage of

invasive isolates resistant to carbapenem antibiotics as determined by the European Centre for Disease Prevention and Control in the

Antimicrobial Resistance Surveillance in Europe 2015 report [11]. Each country is coloured according to the percentage of submitted

K. pneumoniae isolates that were non-susceptible to doripenem, imipenem or meropenem. (b) Pie charts indicating the distribution of

carbapenem-resistance mechanisms in K. pneumoniae isolates submitted to the EuSCAPE study [52]. Mechanisms are coloured

according to the key. ‘Other’ mechanisms: no KPC, NDM, OXA-48 or VIM genes detected. (c) Overall number of K. pneumoniae isolates

submitted by each participating country in the EuSCAPE study.
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Turkey, Tunisia, Algeria, Greece and Romania [71], have
particularly high rates of multidrug-resistant (MDR) bacter-
ia [11, 147]. Overuse of particular antibiotic classes also
affects MDR organisms, such as in Greece where high ceph-
alosporin use [203] is paralleled by high levels of ESBL-E
[11]. Travel to endemic regions also may be having a global
impact following acquisition of MDR pathogens by travel-
lers [204–208].

A particularly concerning issue, especially in Asia, is trans-
ferable colistin resistance [209]. Increased carbapenem
resistance has resulted in an increase in the use of polymyx-
ins (e.g. colistin) to treat XDR pathogens [71, 210]. We are
now faced with the dissemination of genes conferring resis-
tance to these drugs, which are frequently co-located with
additional resistance genes, leaving some infections almost
untreatable [211–214]. Following the first publication of the
transferrable colistin-resistance gene, mcr-1 [209], screening
has demonstrated global existence of mcr-1 in food, animal
and human samples [215, 216]. Following the association of
mcr-1 with ISApl-1 of the IS30 family and formation of the
composite transposon Tn6330, mcr-1 and its genetic envi-
ronment has stabilized [217–219]. It is now beginning to
spread across multiple plasmid types [214, 220–224]. The
ancestral mobilizable state of mcr-1 is more frequently iden-
tified in agricultural isolates than human isolates, particu-
larly those in China, supporting the theory of an animal
origin [209, 225–227]. Colistin is ubiquitous in food-animal
production [228], but its use as a growth promoter has been
banned in the European Union since 2006 and in China
since 2016 [229, 230]. This may begin to ease the antibiotic
selection pressure; however, it is difficult to speculate how
this may affect the human situation as stabilization and dis-
semination of the gene into conjugative plasmids has
already occurred.

CONCLUSION

Antimicrobial stewardship as a strategy to reduce AMR is
high on policy agendas in many countries [231–235] and a
positive impact on the prevalence of MDR pathogens is
beginning to show [236, 237]. Continued strategy develop-
ment is still required; accepted international definitions and
guidelines are yet to be adopted, particularly those suitable
for low-to-middle income countries [238]. With the incep-
tion of the ‘One Health’ initiative [233, 239, 240], consider-
ation should also be given to antimicrobial prescription in
primary care [30, 210, 241, 242], poorly regulated commu-
nity antimicrobial use [243–246] and agricultural antimi-
crobial use [239, 247–249].

The ability of CPE and ESBL-E to evolve and adapt rapidly
due to antibiotic selective pressures is one of the biggest
threats to medical care. An international, multi-disciplinary
approach is urgently required to tackle this global threat.
Pressing issues include improving surveillance to recognize
the importance of mobile AMR elements and increasing the
drive to move rapid, high-resolution diagnostics, such as
WGS, from the research environment into routine clinical

practice. A proactive approach involving all users of antimi-
crobials is imperative to prevent a return to the pre-
antibiotic era.
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