21 research outputs found
Convergence of the weak K\"ahler-Ricci Flow on manifolds of general type
We study the K\"ahler-Ricci flow on compact K\"ahler manifolds whose
canonical bundle is big. We show that the normalized K\"ahler-Ricci flow has
long time existence in the viscosity sense, is continuous in a Zariski open
set, and converges to the unique singular K\"ahler-Einstein metric in the
canonical class. The key ingredient is a viscosity theory for degenerate
complex Monge-Amp\`ere flows in big classes that we develop, extending and
refining the approach of Eyssidieux-Guedj-Zeriahi.Comment: Final version, to appear in IMR
Viscosity solutions to parabolic complex Monge-Amp\`ere equations
In this paper, we study the Cauchy-Dirichlet problem for Parabolic complex
Monge-Amp\`ere equations on a strongly pseudoconvex domain by the viscosity
method. We extend the results in [EGZ15b] on the existence of solution and the
convergence at infinity. We also establish the H\"older regularity of the
solutions when the Cauchy-Dirichlet data are H\"older continuous.Comment: 35 pages. arXiv admin note: text overlap with arXiv:1407.2494 by
other author
Singular cscK metrics on smoothable varieties
We prove the lower semi-continuity of the coercivity threshold of Mabuchi
functional along a degenerate family of normal compact K\"ahler varieties with
klt singularities. Moreover, we establish the existence of singular cscK
metrics on -Gorenstein smoothable klt varieties when the Mabuchi
functional is coercive, these arise as a limit of cscK metrics on close-by
fibres. The proof relies on developing a novel strong topology of
pluripotential theory in families and establishing uniform estimates for cscK
metrics.Comment: 46 pages; v2: removed appendix, changed the proof of Theorem 5.4,
corrected some typo
Epidemic Dynamics via Wavelet Theory and Machine Learning with Applications to Covid-19
We introduce the concept of epidemic-fitted wavelets which comprise, in particular, as special cases the number I(t) of infectious individuals at time t in classical SIR models and their derivatives. We present a novel method for modelling epidemic dynamics by a model selection method using wavelet theory and, for its applications, machine learning-based curve fitting techniques. Our universal models are functions that are finite linear combinations of epidemic-fitted wavelets. We apply our method by modelling and forecasting, based on the Johns Hopkins University dataset, the spread of the current Covid-19 (SARS-CoV-2) epidemic in France, Germany, Italy and the Czech Republic, as well as in the US federal states New York and Florid
Flots de Monge-Ampère complexes sur les variétés hermitiennes compactes
In this thesis we study the complex Monge-Ampère flows, and their generalizations and geometric applications on compact Hermitian manifods. In the first two chapters, we prove that a general complex Monge-Ampère flow on a compact Hermitian manifold can be run from an arbitrary initial condition with zero Lelong number at all points. Using this property, we confirm a conjecture of Tosatti- Weinkove: the Chern-Ricci flow performs a canonical surgical contraction. Finally, we study a generalization of the Chern-Ricci flow on compact Hermitian manifolds, namely the twisted Chern-Ricci flow. This part gave rise to two independent publications. In the third chapter, a notion of parabolic C -subsolution is introduced for parabolic non-linear equations, extending the theory of C -subsolutions recently developed by B. Guan and more specifically G. Székelyhidi for elliptic equations. The resulting parabolic theory provides a convenient unified approach for the study of many geometric flows. This part is a joint work with Duong H. Phong (Columbia University) In the fourth chapter, a viscosity approach is introduced for the Dirichlet problem associated to complex Hessian type equations on domains in Cn. The arguments are modelled on the theory of viscosity solutions for real Hessian type equations developed by Trudinger. As consequence we solve the Dirichlet problem for the Hessian quotient and special Lagrangian equations. We also establish basic regularity results for the solutions. This part is a joint work with Sl-awomir Dinew (Jagiellonian University) and Hoang-Son Do (Hanoi Institute of Mathematics).Dans cette thèse nous nous intéressons aux flots de Monge-Ampère complexes, à leurs généralisations et à leurs applications géométriques sur les variétés hermitiennes compactes. Dans les deux premiers chapitres, nous prouvons qu'un flot de Monge-Ampère complexe sur une variété hermitienne compacte peut être exécuté à partir d'une condition initiale arbitraire avec un nombre Lelong nul en tous points. En utilisant cette propriété, nous con- firmons une conjecture de Tosatti-Weinkove: le flot de Chern-Ricci effectue une contraction chirurgicale canonique. Enfin, nous étudions une généralisation du flot de Chern-Ricci sur des variétés hermitiennes compactes, le flot de Chern-Ricci tordu. Cette partie a donné lieu à deux publications indépendantes. Dans le troisième chapitre, une notion de C -sous-solution parabolique est introduite pour les équations paraboliques, étendant la théorie des C -sous-solutions développée récem- ment par B. Guan et plus spécifiquement G. Székelyhidi pour les équations elliptiques. La théorie parabolique qui en résulte fournit une approche unifiée et pratique pour l'étude de nombreux flots géométriques. Il s'agit ici d'une collaboration avec Duong H. Phong (Université Columbia ) Dans le quatrième chapitre, une approche de viscosité est introduite pour le problème de Dirichlet associé aux équations complexes de type hessienne sur les domaines de Cn. Les arguments sont modélisés sur la théorie des solutions de viscosité pour les équations réelles de type hessienne développées par Trudinger. En conséquence, nous résolvons le problème de Dirichlet pour les équations de quotient de hessiennes et lagrangiennes spéciales. Nous établissons également des résultats de régularité de base pour les solutions. Il s'agit ici d'une collaboration avec Sl-awomir Dinew (Université Jagellonne) et Hoang-Son Do (Institut de Mathématiques de Hanoi)
Geometry of tangent and cotangent bundles on statistical manifolds
This note surveys some results on the geometric structure on the tangent bundle and cotangent bundle of statistical manifolds. We also study the completeness of the tangent bundle with respect to the Sasaki metrics induced from the statistical structures
Monge-Amp\`ere equations on compact Hessian manifolds
We consider degenerate Monge-Amp\`ere equations on compact Hessian manifolds. We establish compactness properties of the set of normalized quasi-convex functions and show local and global comparison principles for twisted Monge-Amp\`ere operators. We then use the Perron method to solve Monge-Amp\`ere equations whose RHS involves an arbitrary probability measure, generalizing works of Cheng-Yau, Delano\"e, Caffarelli-Viaclovsky and Hultgren-\"Onnheim. The intrinsic approach we develop should be useful in deriving similar results on mildly singular Hessian varieties, in line with the Strominger-Yau-Zaslow conjecture
Monge-Amp\`ere equations on compact Hessian manifolds
We consider degenerate Monge-Amp\`ere equations on compact Hessian manifolds. We establish compactness properties of the set of normalized quasi-convex functions and show local and global comparison principles for twisted Monge-Amp\`ere operators. We then use the Perron method to solve Monge-Amp\`ere equations whose RHS involves an arbitrary probability measure, generalizing works of Cheng-Yau, Delano\"e, Caffarelli-Viaclovsky and Hultgren-\"Onnheim. The intrinsic approach we develop should be useful in deriving similar results on mildly singular Hessian varieties, in line with the Strominger-Yau-Zaslow conjecture