3,712 research outputs found

    Entanglement Detection in the Stabilizer Formalism

    Full text link
    We investigate how stabilizer theory can be used for constructing sufficient conditions for entanglement. First, we show how entanglement witnesses can be derived for a given state, provided some stabilizing operators of the state are known. These witnesses require only a small effort for an experimental implementation and are robust against noise. Second, we demonstrate that also nonlinear criteria based on uncertainty relations can be derived from stabilizing operators. These criteria can sometimes improve the witnesses by adding nonlinear correction terms. All our criteria detect states close to Greenberger-Horne-Zeilinger states, cluster and graph states. We show that similar ideas can be used to derive entanglement conditions for states which do not fit the stabilizer formalism, such as the three-qubit W state. We also discuss connections between the witnesses and some Bell inequalities.Comment: 15 pages including 2 figures, revtex4; typos corrected, presentation improved; to appear in PR

    Quasi-adiabatic Switching for Metal-Island Quantum-dot Cellular Automata

    Full text link
    Recent experiments have demonstrated a working cell suitable for implementing the Quantum-dot Cellular Automata (QCA) paradigm. These experiments have been performed using metal island clusters. The most promising approach to QCA operation involves quasi-adiabatically switching the cells. This has been analyzed extensively in gated semiconductor cells. Here we present a metal island cell structure that makes quasi-adiabatic switching possible. We show how this permits quasi-adiabatic clocking, and enables a pipelined architecture.Comment: 40 preprint-style double-spaced pages including 16 figure

    Ionization of atoms by few-cycle EUV laser pulses: carrier-envelope phase dependence of the intra-pulse interference effects

    Full text link
    We have investigated the ionization of the H atom by intense few-cycle laser pulses, in particular the intra-pulse interference effects, and their dependence on the carrier-envelope phase (CEP) of the laser pulse. In the final momentum distribution of the continuum electrons the imprint of two types of intra-pulse interference effects can be observed, namely the temporal and spatial interference. During the spatial interference electronic wave packets emitted at the same time, but following different paths interfere leading to an interference pattern measurable in the electron spectra. This can be also interpreted as the interference between a direct and a scattered wave, and the spatial interference pattern as the holographic mapping (HM) of the target. This HM pattern is strongly influenced by the carrier-envelope phase through the shape of the laser pulse. Here, we have studied how the shape of the HM pattern is modified by the CEP, and we have found an optimal CEP for the observation of HM

    On the decay of Burgers turbulence

    Get PDF
    This work is devoted to the decay ofrandom solutions of the unforced Burgers equation in one dimension in the limit of vanishing viscosity. The initial velocity is homogeneous and Gaussian with a spectrum proportional to knk^n at small wavenumbers kk and falling off quickly at large wavenumbers. In physical space, at sufficiently large distances, there is an ``outer region'', where the velocity correlation function preserves exactly its initial form (a power law) when nn is not an even integer. When 1<n<21<n<2 the spectrum, at long times, has three scaling regions : first, a kn|k|^n region at very small kk\ms1 with a time-independent constant, stemming from this outer region, in which the initial conditions are essentially frozen; second, a k2k^2 region at intermediate wavenumbers, related to a self-similarly evolving ``inner region'' in physical space and, finally, the usual k2k^{-2} region, associated to the shocks. The switching from the kn|k|^n to the k2k^2 region occurs around a wave number ks(t)t1/[2(2n)]k_s(t) \propto t^{-1/[2(2-n)]}, while the switching from k2k^2 to k2k^{-2} occurs around kL(t)t1/2k_L(t)\propto t^{-1/2} (ignoring logarithmic corrections in both instances). The key element in the derivation of the results is an extension of the Kida (1979) log-corrected 1/t1/t law for the energy decay when n=2n=2 to the case of arbitrary integer or non-integer n>1n>1. A systematic derivation is given in which both the leading term and estimates of higher order corrections can be obtained. High-resolution numerical simulations are presented which support our findings.Comment: In LaTeX with 11 PostScript figures. 56 pages. One figure contributed by Alain Noullez (Observatoire de Nice, France

    Data to the trypetidae fauna of the Tisza-valley (diptera)

    Get PDF

    Growth of ZnO nanostructures on Si by means of plasma immersion ion implantation and deposition

    Get PDF
    Crystalline zinc oxide (ZnO) nanostructures have been grown on Si substrates by means of Plasma Based Ion Implantation and Deposition (PIII&D) at temperature of about 300 0C and in the presence of an argon glow discharge. In the process a crucible filled with small pieces of metallic zinc plays the role of the anode of the discharge itself, being polarized by positive DC voltage of about 400V. Electrons produced by thermionic emission by an oxide cathode (Ba, Sr, Ca)O impact this crucible, causing its heating and vaporization of Zn. Partial ionization of Zn atoms takes place due to collisions with plasma particles. High negative voltage pulses (7 kv/40μs/250Hz) applied to the sample holder cause the implantation of metallic zinc into Si surface, while Zn deposition happens between pulses. After annealing at 700 0C, strong UV and various visible photoluminescence bands are observed at room temperature, as well as the presence of ZnO nanoparticles. The coated surface was characterized in detail using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and photoluminescence (PL) spectroscopy. XRD indicated the presence of only ZnO peaks after annealing. The composition analysis by EDS revealed distinct Zn/O stoichiometry relation depending on the conditions of the process. AFM images showed the formation of columns in the nanoscale range. Topography viewed by SEM showed the formation of structures similar to cactus with nanothorns. Depth analysis performed by XPS indicated an increase of concentration of metallic Zn with increasing depth and the exclusive presence of ZnO for outer regions. PIII&D allowed to growing nanostructures of ZnO on Si without the need of a buffer layer

    Physical Properties of Galactic Planck Cold Cores revealed by the Hi-GAL survey

    Get PDF
    Previous studies of the initial conditions of massive star formation have mainly targeted Infrared-Dark Clouds (IRDCs) toward the inner Galaxy. This is due to the fact that IRDCs were first detected in absorption against the bright mid-IR background, requiring a favourable location to be observed. By selection, IRDCs represent only a fraction of the Galactic clouds capable of forming massive stars and star clusters. Due to their low dust temperatures, IRDCs are bright in the far-IR and millimeter and thus, observations at these wavelengths have the potential to provide a complete sample of star-forming massive clouds across the Galaxy. Our aim is to identify the clouds at the initial conditions of massive star formation across the Galaxy and compare their physical properties as a function of their Galactic location. We have examined the physical properties of a homogeneous galactic cold core sample obtained with the Planck satellite across the Galactic Plane. With the use of Herschel Hi-GAL observations, we have characterized the internal structure of them. By using background-subtracted Herschel images, we have derived the H2 column density and dust temperature maps for 48 Planck clumps. Their basic physical parameters have been calculated and analyzed as a function of location within the Galaxy. These properties have also been compared with the empirical relation for massive star formation derived by Kauffmann & Pillai (2010). Most of the Planck clumps contain signs of star formation. About 25% of them are massive enough to form high mass stars. Planck clumps toward the Galactic center region show higher peak column densities and higher average dust temperatures than those of the clumps in the outer Galaxy. Although we only have seven clumps without associated YSOs, the Hi-GAL data show no apparent differences in the properties of Planck cold clumps with and without star formation.Comment: 22 pages, 11 figures, accepted for publication in A&
    corecore