13 research outputs found

    Functional characterization of B class MADS-box transcription factors in Gerbera hybrida

    Get PDF
    According to the classical ABC model, B-function genes are involved in determining petal and stamen development. Most core eudicot species have B class genes belonging to three different lineages: the PI, euAP3, and TM6 lineages, although both Arabidopsis and Antirrhinum appear to have lost their TM6-like gene. Functional studies were performed for three gerbera (Gerbera hybrida) B class MADS-box genes—PI/GLO-like GGLO1, euAP3 class GDEF2, and TM6-like GDEF1—and data are shown for a second euAP3-like gene, GDEF3. In phylogenetic analysis, GDEF3 is a closely related paralogue of GDEF2, and apparently stems from a duplication common to all Asteraceae. Expression analysis and transgenic phenotypes confirm that GGLO1 and GDEF2 mediate the classical B-function since they determine petal and stamen identities. However, based on assays in yeast, three B class heterodimer combinations are possible in gerbera. In addition to the interaction of GGLO1 and GDEF2 proteins, GGLO1 also pairs with GDEF1 and GDEF3. This analysis of GDEF1 represents the first functional characterization of a TM6-like gene in a core eudicot species outside Solanaceae. Similarly to its relatives in petunia and tomato, the expression pattern and transgenic phenotypes indicate that GDEF1 is not involved in determination of petal identity, but has a redundant role in regulating stamen development

    Evolutionary Co-option of Floral Meristem Identity Genes for Patterning of the Flower-like Asteraceae Inflorescence

    Get PDF
    The evolutionary success of Asteraceae, the largest family of flowering plants, has been attributed to the unique inflorescence architecture of the family, which superficially resembles an individual flower. Here, we show that Asteraceae inflorescences (flower heads, or capitula) resemble solitary flowers not only morphologically but also at the molecular level. By conducting functional analyses for orthologs of the flower meristem identity genes LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) in Gerbera hybrida, we show that GhUFO is the master regulator of flower meristem identity, while GhLFY has evolved a novel, homeotic function during the evolution of head-like inflorescences. Resembling LFY expression in a single flower meristem, uniform expression of GhLFY in the inflorescence meristem defines the capitulum as a determinate structure that can assume floral fate upon ectopic GhUFO expression. We also show that GhLFY uniquely regulates the ontogeny of outer, expanded ray flowers but not inner, compact disc flowers, indicating that the distinction of different flower types in Asteraceae is connected with their independent evolutionary origins from separate branching systems.Peer reviewe

    The AKT3 potassium channel protein interacts with the AtPP2CA protein phosphatase 2C

    No full text
    The AKT3 potassium channel protein was identified as a strongly interacting partner of the Arabidopsis thaliana protein phosphatase 2C (AtPP2CA) in a yeast two-hybrid screen. A deletion analysis indicated that the catalytic domain of AtPP2CA was essential for the interaction with AKT3, Furthermore, the related PP2C phosphatase ABI1 did not interact with AKT3 in yeast

    A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence

    No full text
    Several key processes in plant development are regulated by TCP transcription factors. CYCLOIDEA-like (CYC-like) TCP domain proteins have been shown to control flower symmetry in distantly related plant lineages. Gerbera hybrida, a member of one of the largest clades of angiosperms, the sunflower family (Asteraceae), is an interesting model for developmental studies because its elaborate inflorescence comprises different types of flowers that have specialized structures and functions. The morphological differentiation of flower types involves gradual changes in flower size and symmetry that follow the radial organization of the densely packed inflorescence. Differences in the degree of petal fusion further define the distinct shapes of the Gerbera flower types. To study the role of TCP transcription factors during specification of this complex inflorescence organization, we characterized the CYC-like homolog GhCYC2 from Gerbera. The expression of GhCYC2 follows a gradient along the radial axis of the inflorescence. GhCYC2 is expressed in the marginal, bilaterally symmetrical ray flowers but not in the centermost disk flowers, which are nearly radially symmetrical and have significantly less fused petals. Overexpression of GhCYC2 causes disk flowers to obtain morphologies similar to ray flowers. Both expression patterns and transgenic phenotypes suggest that GhCYC2 is involved in differentiation among Gerbera flower types, providing the first molecular evidence that CYC-like TCP factors take part in defining the complex inflorescence structure of the Asteraceae, a major determinant of the family's evolutionary success
    corecore