12 research outputs found

    Az NMDA receptor-alegységek szerepe kisagyi szemcsesejtek fejlődésében: vizsgálatok egy transzgenikus egértörzsben = The role of NMDA receptor subunits in the development of cerebellar granule cells: investigations on transgenic mice

    Get PDF
    Az NR2B alegység túltermeltetése rendellenes kisagy-fejlődéshez vezet: a kisagyi szemcsesejtek és a parallel rost szinapszisok száma lecsökken, a Purkinje sejtek dendritikus arborizációja kevésbé fejlett. In vivo BrdU jelölésekkel igazoltuk, hogy az NR2C-2B kisagyi szemcsesejtek vándorlása felgyorsul. NR2C ko. állatok felhasználásával bizonyítottuk, hogy a megfigyelt változások nem az NR2C alegység hiányának, hanem az NR2B alegység túltermeltetésének a következményei. A kisagyi szemcsesejt-tenyészeteket úgy készítettük, hogy a vad típusú és NR2C-2B szemcsesejtekben kifejeződő NMDA receptorok összetételükben és funkcionálisan különbözzenek. Az NR2C-2B alegységcsere a nyúlványok mozgására nincs hatással, ezzel szemben a sejttestek vándorlási átlagsebességét megnöveli. NR2B alegység-specifikus gátlószerekkel végzett kísérletek alapján a transzgén sejtekben nagyobb az NR1/NR2B diheteromer receptorok aránya. Adataink alapján a diheteromer NMDA receptorok arányának és/vagy működésének növekedése állhat a transzgén sejtekre jellemző, megnövekedett migrációs sebesség mögött. Nem várt eredményünk, hogy a különböző életkorú állatokból származó szemcsesejtek mozgási aktivitása azonos tenyésztési feltételek mellett is jelentősen különbözik. Habár a tenyészetek morfológiája, valamint számos molekuláris jellemzője az izolálási életkortól függetlenül rendkívül hasonló, a fiatalabb állatokból származó idegsejtek mozgása gyorsabb, mint az öregebb állatokból származó idegsejteké. | Long-term cerebellar NR2B overexpression led to aberrant Purkinje cell morphology, a decrease in granule cell number and parallel fiber input. BrdU labeling showed that in vivo migratory rate of NR2C-2B granule cells was increased. As similar histological changes were not observed in NR2C ko. mice, developmental abnormalities reported in NR2C-2B mice were due to the overexpression of NR2B and not to the lack of NR2C subunit expression. Culture conditions were developed to obtain differences in NMDA receptor subunit composition and functioning between wild-type and NR2C-2B granule cells in vitro. Computer-controlled videomicroscopy showed that NR2C-2B subunit exchange did not affect neurite motility while significantly increased average migratory speed of granule cell bodies. NR2B subunit-specific NMDA receptor antagonists altered cell motility differently in wild-type and mutant cultures, indicating that NR1/NR2B diheteromer subunits were more characteristic to NR2C-2B cultures and that increase in the amount and/or in the activity of NR1/NR2B NMDA receptors might be responsible for an increase in migratory speed. Unexpected findings were that despite similarities in culture morphology, development or gene expression patterns, granule cells isolated from younger postnatal ages showed increased migratory speed and activity compared to granule cells isolated from older animals

    Homeostatic plasticity and burst activity are mediated by hyperpolarization-activated cation currents and T-type calcium channels in neuronal cultures.

    Get PDF
    Homeostatic plasticity stabilizes neuronal networks by adjusting the responsiveness of neurons according to their global activity and the intensity of the synaptic inputs. We investigated the homeostatic regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) and T-type calcium (CaV3) channels in dissociated and organotypic slice cultures. After 48 h blocking of neuronal activity by tetrodotoxin (TTX), our patch-clamp experiments revealed an increase in the depolarizing voltage sag and post-inhibitory rebound mediated by HCN and CaV3 channels, respectively. All HCN subunits (HCN1 to 4) and T-type Ca-channel subunits (CaV3.1, 3.2 and 3.3) were expressed in both control and activity-deprived hippocampal cultures. Elevated expression levels of CaV3.1 mRNA and a selective increase in the expression of TRIP8b exon 4 isoforms, known to regulate HCN channel localization, were also detected in TTX-treated cultured hippocampal neurons. Immunohistochemical staining in TTX-treated organotypic slices verified a more proximal translocation of HCN1 channels in CA1 pyramidal neurons. Computational modeling also implied that HCN and T-type calcium channels have important role in the regulation of synchronized bursting evoked by previous activity-deprivation. Thus, our findings indicate that HCN and T-type Ca-channels contribute to the homeostatic regulation of excitability and integrative properties of hippocampal neurons

    Miozin motorfehérjék: szerkezet-funkció összefüggések és funkcionális vizsgálatok idegsejteken = Myosin motor proteins: structure-function relationship and functional studies in neurons

    Get PDF
    Kutatómunkánk elsődlegesen a miozin motorfehérjék szerkezet-funkció vizsgálatára irányult. Meghatároztuk a konvencionális miozin (miozin-II) fej szerkezetét az enzimatikus ciklus egy ez idáig nem ismert állapotában. A szerkezet rávilágított a kémiai energiát munkává alakító „négyütemű” motor működésének több kulcsfontosságú elemére. Azonosítottunk a motor doménen belül egy kölcsönhatást, amely hozzájárulhat a különböző miozinok optimális működéséhez. Kiderítettük, hogy a fej-farok kapcsolódás instabil szerkezetű a közvetlenül szabályozott miozin-II motoroknál. A miozin-VI farok régiójáról megmutattuk, hogy egyszálú ?-hélix (CSAH) szerkezetű. Új szerkezetjósló programokkal megállapítottuk, hogy a CSAH egy eddig fel nem ismert, sok fehérjében megtalálható szerkezeti elem, amely mechanikai szerepet tölthet be. A miozin-V intracelluláris transzport folyamatokban betöltött szerepét élő idegsejteken kezdtük el vizsgálni. A miozin-V farok könnyű lánc (DYNLL) kötőhelyét azonosítottuk a nehéz láncon belül. Kimutattuk, hogy a DYNLL egy konzervatív ún. csomóponti fehérje, amely a kölcsönható fehérjék szerkezet nélküli régiójában elhelyezkedő lineáris motívumokhoz kötődik és így szabályozza őket. Jellemeztük a DYNLL-partner komplexek kialakulásának termodinamikáját és kinetikáját. Irányított evolúció segítségével az eddig ismerteknél erősebb kötőszekvenciát állítottunk elő, s bioinformatikai módszerrel további potenciális partnerfehérjéket azonosítottunk a humán proteomban. | We have primarily pursued structure-function studies of myosin motor proteins. We have determined the 3-dimensional structure of conventional myosin (myosin II) in one state of its enzymatic cycle. The structure highlighted some of the key elements during the chemo-mechanical energy transduction of the “4-stroke” motor. We have identified an interaction within the motor domain of which could contribute to the optimal functioning of different myosins. Comparative studies revealed that the structure of the coiled-coil tail at the head-tail junction is unstable in directly regulated myosin IIs. We have shown that the tail region of myosin VI forms a single ?-helix (CSAH). Using newly developed prediction programs we have found that CSAH is a novel structural motif present in a many proteins and that it could play mechanical roles. We have started to investigate the role of myosin V in intracellular transport of neuronal cells by live-cell imaging. We have localized the binding site of the tail light chain (DYNLL) of myosin V. DYNLL was identified as a conserved hub protein that binds to linear motifs localized in disordered regions of their binding partners and hence regulate them. We have determined the thermodynamic and kinetic properties of DYNLL-partner complexes. Using directed evolution we have selected a stronger DYNLL binding peptide than previously known ones, and we have predicted potentially novel binding partners in the human proteome

    The small molecule AUTEN-99 (autophagy enhancer-99) prevents the progression of neurodegenerative symptoms

    Get PDF
    Autophagy functions as a main route for the degradation of superfluous and damaged constituents of the cytoplasm. Defects in autophagy are implicated in the development of various age-dependent degenerative disorders such as cancer, neurodegeneration and tissue atrophy, and in accelerated aging. To promote basal levels of the process in pathological settings, we previously screened a small molecule library for novel autophagy-enhancing factors that inhibit the myotubularin-related phosphatase MTMR14/Jumpy, a negative regulator of autophagic membrane formation. Here we identify AUTEN-99 (autophagy enhancer-99), which activates autophagy in cell cultures and animal models. AUTEN-99 appears to effectively penetrate through the blood-brain barrier, and impedes the progression of neurodegenerative symptoms in Drosophila models of Parkinson's and Huntington's diseases. Furthermore, the molecule increases the survival of isolated neurons under normal and oxidative stress-induced conditions. Thus, AUTEN-99 serves as a potent neuroprotective drug candidate for preventing and treating diverse neurodegenerative pathologies, and may promote healthy aging

    The small molecule AUTEN-99 (autophagy enhancer-99) prevents the progression of neurodegenerative symptoms

    Get PDF
    Autophagy functions as a main route for the degradation of superfluous and damaged constituents of the cytoplasm. Defects in autophagy are implicated in the development of various age-dependent degenerative disorders such as cancer, neurodegeneration and tissue atrophy, and in accelerated aging. To promote basal levels of the process in pathological settings, we previously screened a small molecule library for novel autophagy-enhancing factors that inhibit the myotubularin-related phosphatase MTMR14/Jumpy, a negative regulator of autophagic membrane formation. Here we identify AUTEN-99 (autophagy enhancer-99), which activates autophagy in cell cultures and animal models. AUTEN-99 appears to effectively penetrate through the blood-brain barrier, and impedes the progression of neurodegenerative symptoms in Drosophila models of Parkinson's and Huntington's diseases. Furthermore, the molecule increases the survival of isolated neurons under normal and oxidative stress-induced conditions. Thus, AUTEN-99 serves as a potent neuroprotective drug candidate for preventing and treating diverse neurodegenerative pathologies, and may promote healthy aging

    LC8 dynein light chain (DYNLL1) binds to the C-terminal domain of ATM-interacting protein (ATMIN/ASCIZ) and regulates its subcellular localization

    No full text
    LC8 dynein light chain (now termed DYNLL1 and DYNLL2 in mammals), a dimeric 89 amino acid protein, is a component of the dynein multi-protein complex. However a substantial amount of DYNLL1 is not associated to microtubules and it can thus interact with dozens of cellular and viral proteins that display well-defined, short linear motifs. Using DYNLL1 as bait in a yeast two-hybrid screen of a human heart library we identified ATMIN, an ATM kinase-interacting protein, as a DYNLL1-binding partner. Interestingly, ATMIN displays at least 18 SQ/TQ motifs in its sequence and DYNLL1 is known to bind to proteins with KXTQT motifs. Using pepscan and yeast two-hybrid techniques we show that DYNLL1 binds to multiple SQ/TQ motifs present in the carboxy-terminal domain of ATMIN. Recombinant expression and purification of the DYNLL1-binding region of ATMIN allowed us to obtain a polypeptide with an apparent molecular mass in gel filtration close to 400 kDa that could bind to DYNLL1 in vitro. The NMR data-driven modelled complexes of DYNLL1 with two selected ATMIN peptides revealed a similar mode of binding to that observed between DYNLL1 and other peptide targets. Remarkably, co-expression of mCherry-DYNLL1 and GFP-ATMIN mutually affected intracellular protein localization. In GFP-ATMIN expressing-cells DNA damage induced efficiently nuclear foci formation, which was partly impeded by the presence of mCherry-DYNLL1. Thus, our results imply a potential cellular interference between DYNLL1 and ATMIN functions.This work was supported by Grants MICINN BFU2009-10442 (I.R.C.), Consolider-centrosoma 3D (CSD2006-00023) (M.B.), CTQ2008-0080 (M.B.), OTKA NK81950 (L.N.), K81934 (K.S.), TÁMOP 4.2.1./B-09/KMR-2010-0003

    AUTEN-67, an autophagy-enhancing drug candidate with potent antiaging and neuroprotective effects.

    No full text
    Autophagy is a major molecular mechanism that eliminates cellular damage in eukaryotic organisms. Basal levels of autophagy are required for maintaining cellular homeostasis and functioning. Defects in the autophagic process are implicated in the development of various age-dependent pathologies including cancer and neurodegenerative diseases, as well as in accelerated aging. Genetic activation of autophagy has been shown to retard the accumulation of damaged cytoplasmic constituents, delay the incidence of age-dependent diseases and extend life span in genetic models. This implies that autophagy serves as a therapeutic target in treating such pathologies. Although several autophagy-inducing chemical agents have been identified, the majority of them operate upstream of the core autophagic process, thereby exerting undesired side effects. Here, we screened a small-molecule library for specific inhibitors of MTMR14, a myotubularin-related phosphatase antagonizing the formation of autophagic membrane structures, and isolated AUTEN-67 (autophagy enhancer-67) that significantly increases autophagic flux in cell lines and in vivo models. AUTEN-67 promotes longevity and protects neurons from undergoing stress-induced cell death. It also restores nesting behavior in a murine model of Alzheimer disease, without apparent side effects. Thus, AUTEN-67 is a potent drug candidate for treating autophagy-related diseases
    corecore