13 research outputs found

    Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease: Results from the CREDENCE trial and meta-analysis

    Get PDF
    BACKGROUND AND PURPOSE: Chronic kidney disease with reduced estimated glomerular filtration rate or elevated albuminuria increases risk for ischemic and hemorrhagic stroke. This study assessed the effects of sodium glucose cotransporter 2 inhibitors (SGLT2i) on stroke and atrial fibrillation/flutter (AF/AFL) from CREDENCE (Canagliflozin and Renal Events in Diabetes With Established Nephropathy Clinical Evaluation) and a meta-Analysis of large cardiovascular outcome trials (CVOTs) of SGLT2i in type 2 diabetes mellitus. METHODS: CREDENCE randomized 4401 participants with type 2 diabetes mellitus and chronic kidney disease to canagliflozin or placebo. Post hoc, we estimated effects on fatal or nonfatal stroke, stroke subtypes, and intermediate markers of stroke risk including AF/AFL. Stroke and AF/AFL data from 3 other completed large CVOTs and CREDENCE were pooled using random-effects meta-Analysis. RESULTS: In CREDENCE, 142 participants experienced a stroke during follow-up (10.9/1000 patient-years with canagliflozin, 14.2/1000 patient-years with placebo; hazard ratio [HR], 0.77 [95% CI, 0.55-1.08]). Effects by stroke subtypes were: ischemic (HR, 0.88 [95% CI, 0.61-1.28]; n=111), hemorrhagic (HR, 0.50 [95% CI, 0.19-1.32]; n=18), and undetermined (HR, 0.54 [95% CI, 0.20-1.46]; n=17). There was no clear effect on AF/AFL (HR, 0.76 [95% CI, 0.53-1.10]; n=115). The overall effects in the 4 CVOTs combined were: Total stroke (HRpooled, 0.96 [95% CI, 0.82-1.12]), ischemic stroke (HRpooled, 1.01 [95% CI, 0.89-1.14]), hemorrhagic stroke (HRpooled, 0.50 [95% CI, 0.30-0.83]), undetermined stroke (HRpooled, 0.86 [95% CI, 0.49-1.51]), and AF/AFL (HRpooled, 0.81 [95% CI, 0.71-0.93]). There was evidence that SGLT2i effects on total stroke varied by baseline estimated glomerular filtration rate (P=0.01), with protection in the lowest estimated glomerular filtration rate (45 mL/min/1.73 m2]) subgroup (HRpooled, 0.50 [95% CI, 0.31-0.79]). CONCLUSIONS: Although we found no clear effect of SGLT2i on total stroke in CREDENCE or across trials combined, there was some evidence of benefit in preventing hemorrhagic stroke and AF/AFL, as well as total stroke for those with lowest estimated glomerular filtration rate. Future research should focus on confirming these data and exploring potential mechanisms

    Novel TPM3 mutation in a family with cap myopathy and review of the literature

    No full text
    Cap myopathy is a rare congenital myopathy characterized by the presence of caps within muscle fibres and caused by mutations in ACTA1, TPM2 or TPM3. Thus far, only three cases with TPM3-related cap myopathy have been described. Here, we report on the first autosomal dominant family with cap myopathy in three-generations, caused by a novel heterozygous mutation in the alpha-tropomyosin-slow-encoding gene (TPM3; exon 4; c.445C>A; p.Leu149Ile). The three patients experienced first symptoms of muscle weakness in childhood and followed a slowly progressive course. They presented generalized hypotrophy and mild muscle weakness, elongated face, high arched palate, micrognathia, scoliosis and respiratory involvement. Intrafamilial variability of skeletal deformities, respiratory involvement and mild cardiac abnormalities was noted. Muscle MRI revealed a recognizable pattern of fatty muscle infiltration and masseter muscle hypertrophy. Subsarcolemmal caps were present in 6-10% of the fibres and immunoreactive with anti-tropomyosin antibodies. We conclude that the MRI-pattern of muscle involvement and the presence of masseter muscle hypertrophy in cap myopathy may guide molecular genetic diagnosis towards a mutation in TPM3. Regular respiratory examinations are important, even if patients have no anamnestic clues. We compare our findings to all cases of cap myopathy with identified mutations (n=11), thus far reported in the literature.publisher: Elsevier articletitle: Novel TPM3 mutation in a family with cap myopathy and review of the literature journaltitle: Neuromuscular Disorders articlelink: http://dx.doi.org/10.1016/j.nmd.2013.10.002 content_type: article copyright: Copyright © 2013 Elsevier B.V. All rights reserved.status: publishe

    Novel TPM3 mutation in a family with cap myopathy and review of the literature

    No full text
    Cap myopathy is a rare congenital myopathy characterized by the presence of caps within muscle fibres and caused by mutations in ACTA1, TPM2 or TPM3. Thus far, only three cases with TPM3-related cap myopathy have been described. Here, we report on the first autosomal dominant family with cap myopathy in three-generations, caused by a novel heterozygous mutation in the alpha-tropomyosin-slow-encoding gene (TPM3; exon 4; c.445C>A; p.Leu149Ile). The three patients experienced first symptoms of muscle weakness in childhood and followed a slowly progressive course. They presented generalized hypotrophy and mild muscle weakness, elongated face, high arched palate, micrognathia, scoliosis and respiratory involvement. Intrafamilial variability of skeletal deformities, respiratory involvement and mild cardiac abnormalities was noted. Muscle MRI revealed a recognizable pattern of fatty muscle infiltration and masseter muscle hypertrophy. Subsarcolemmal caps were present in 6–10% of the fibres and immunoreactive with anti-tropomyosin antibodies. We conclude that the MRI-pattern of muscle involvement and the presence of masseter muscle hypertrophy in cap myopathy may guide molecular genetic diagnosis towards a mutation in TPM3. Regular respiratory examinations are important, even if patients have no anamnestic clues. We compare our findings to all cases of cap myopathy with identified mutations (n = 11), thus far reported in the literature

    De novo missense variants in RRAGC lead to a fatal mTORopathy of early childhood

    No full text
    Introduction Mechanistic target of rapamycin complex 1 (mTORC1) regulates cell growth in response to nutritional status. Central to mTORC1 function is the Rag-GTPase heterodimer. One component of the Rag heterodimer is RagC (Ras-related GTP-binding protein C), which is encoded by the RRAGC gene. Material and Methods Genetic testing via trio exome sequencing was applied to identify the underlying disease cause in three infants who suffered from dilated cardiomyopathy, hepatopathy and brain abnormalities including pachygyria, polymicrogyria, and septo-optic dysplasia. Studies in patient-derived skin fibroblasts and in a HEK293 cell model were performed to investigate the cellular consequences. Results We identified three de novo missense variants in RRAGC (NM_022157.4: c.269C>A, p.(Thr90Asn), c.353C>T, p.(Pro118Leu), and c.343T>C, p.(Trp115Arg)), which were previously reported as occurring somatically in follicular lymphoma. Studies of patient-derived fibroblasts carrying the p.(Thr90Asn) variant revealed increased cell size as well as dysregulation of mTOR-related p70S6K (ribosomal protein S6 kinase 1) and TFEB (transcription factor EB) signaling. Moreover, subcellular localization of mTOR was decoupled from metabolic state. We confirmed the key-findings for all RRAGC variants described in this study in a HEK293 cell model. Discussion The above results are in line with a constitutive over-activation of the mTORC1 pathway. Our study establishes de novo missense variants in RRAGC as cause of an early-onset mTORopathy with unfavorable prognosis
    corecore