88 research outputs found
Quantitative analysis methods for studying fenestrations in liver sinusoidal endothelial cells. A comparative study
Liver Sinusoidal Endothelial Cells (LSEC) line the hepatic vasculature providing blood filtration via transmembrane nanopores called fenestrations. These structures are 50−300 nm in diameter, which is below the resolution limit of a conventional light microscopy. To date, there is no standardized method of fenestration image analysis. With this study, we provide and compare three different approaches: manual measurements, a semi-automatic (threshold-based) method, and an automatic method based on user-friendly open source machine learning software. Images were obtained using three super resolution techniques – atomic force microscopy (AFM), scanning electron microscopy (SEM), and structured illumination microscopy (SIM). Parameters describing fenestrations such as diameter, area, roundness, frequency, and porosity were measured. Finally, we studied the user bias by comparison of the data obtained by five different users applying provided analysis methods
Photoinduced Br Desorption from CsBr Thin Films Grown on Cu(100)
Thin films of CsBr deposited onto metals such as copper are potential photocathode materials for light sources and other applications. We investigate desorption dynamics of Br atoms from CsBr films grown on insulator (KBr, LiF) and metal (Cu) substrates induced by sub-bandgap 6.4 eV laser pulses. The experimental results demonstrate that the peak kinetic energy of Br atoms desorbed from CsBr/Cu films is much lower than that for the hyperthermal desorption from CsBr/LiF films. Kelvin probe measurements indicate negative charge at the surface following Br desorption from CsBr/Cu films. Our ab initio calculations of excitons at CsBr surfaces demonstrate that this behavior can be explained by an exciton model of desorption including electron trapping at the CsBr surface. Trapped negative charges reduce the energy of surface excitons available for Br desorption. We examine the electron-trapping characteristics of low-coordinated sites at the surface, in particular, divacancies and kink sites. We also provide a model of cation desorption caused by Franck-Hertz excitation of F centers at the surface in the course of irradiation of CsBr/Cu films. These results provide new insights into the mechanisms of photoinduced structural evolution of alkali halide films on metal substrates and activation of metal photocathodes coated with CsBr
Measurement of the velocity distribution of sputtered Na atoms from NaCl by Doppler shift laser fluorescence
The velocity distribution of sputtered Na atoms from NaCI during 15 keV, Ar+ bombardment was measured by a Doppler shift laser fluorescence technique. Contrary to other measurements, the sputtered Na atoms were found to have a velocity distribution identical to that of a three-dimensional Maxwell-Boltzmann gas.Peer reviewedElectrical and Computer Engineerin
Velocity distributions of sputtered excited atoms
The first direct measurements are reported of the velocity distributions of sputtered atoms in excited states with electronic configurations completely different from the ground state. In contrast to previous work, the measured distributions for both the singlet and triplet metastable D states of Ba atoms showed no energy thresholds and had most probable energies similar to those of sputtered ground-state atoms.Peer reviewedElectrical and Computer Engineerin
Dynamics of the defect-mediated desorption of alkali halide surfaces
Dynamic processes leading to desorption of Rb and I atoms from the RbI (100) surface co-irradiated with 1 keV electrons and visible light (with a wavelength corresponding to the F-center absorption band) have been studied by means of mass-selected time-of-flight(TOF) spectroscopy. Depending on the sample temperature, substantial enhancement of the desorption yield as well as pronounced changes in the TOFspectra of the emitted atoms have been found. The TOFspectra of halogen atoms consist of two components: the thermal (which can be fitted with Maxwellian distribution) and the non-thermal one. The non-thermal peak is temperature-independent. There is no non-thermal component for alkali atoms. The comparison of TOFspectra for I atoms emitted from electron bombarded sample with and without simultaneous light irradiation indicates that the yield increase is caused by thermally desorbed atoms, while the non-thermal peak remains unchanged. Presented results confirm well the predictions of the theoretical model of desorption proposed earlier, known as the defect-mediated (F and H center) desorption of alkali halide
- …