18 research outputs found
Necessary conditions for irreducibility of algebroid plane curves
Let K be an algebraically closed field of characteristic 0 and let
ƒ ϵ K[[X]] [Y] be monic. Using the properties of approximate roots given in
[J. Algebra 343 (2011), pp. 143-159] we propose some necessary conditions
for irreducibility of ƒ in K[[X]] [Y]. The result is expressed only in terms of
intersection multiplicities of ƒ with its approximate roots
Degenerate singularities and their Milnor numbers
We give an example of a curious behaviour of the Milnor number with respect to evolving degeneracy of an isolated singularity in C2
A note on the Łojasiewicz exponent of non-degenerate isolated hypersurface singularities
We prove that in order to find the value of the Łojasiewicz exponent ł(f) of a Kouchnirenko non-degenerate holomorphic function f : (Cn; 0) → (C; 0) with an isolated singular point at the origin, it is enough to find this value for any other (possibly simpler) function g : (Cn; 0) → (C; 0), provided this function is also Kouchnirenko non-degenerate and has the same Newton diagram as f does. We also state a more general problem, and then reduce it to a Teissier-like result on (c)-cosecant deformations, for formal power series with coefficients in an algebraically closed field K
Zariski multiplicity conjecture in families of non-degenerate singularities
Podajemy nowy, elementarny dowód hipotezy o krotności Zariskiego
w μ-constant rodzinach niezdegenerowanych osobliwości
The Łojasiewicz exponent over a field of arbitrary characteristic
Let K be an algebraically closed field and let K((XQ)) denote the field
of generalized series with coefficients in K. We propose definitions of the local
Łojasiewicz exponent of F = ( f1, . . . , fm) ∈ K[[X, Y ]]m as well as of the
Łojasiewicz exponent at infinity of F = ( f1, . . . , fm) ∈ K[X, Y ]m, which generalize
the familiar case of K = C and F ∈ C{X, Y }m (resp. F ∈ C[X, Y ]m), see
Cha˛dzy´nski and Krasi´nski (In: Singularities, 1988; In: Singularities, 1988; Ann Polon
Math 67(3):297–301, 1997; Ann Polon Math 67(2):191–197, 1997), and prove some
basic properties of such numbers. Namely, we show that in both cases the exponent
is attained on a parametrization of a component of F (Theorems 6 and 7), thus being
a rational number. To this end, we define the notion of the Łojasiewicz pseudoexponent
of F ∈ (K((XQ))[Y ])m for which we give a description of all the generalized
series that extract the pseudoexponent, in terms of their jets. In particular, we show
that there exist only finitely many jets of generalized series giving the pseudoexponent
of F (Theorem 5). The main tool in the proofs is the algebraic version of Newton’s
Polygon Method. The results are illustrated with some explicit examples
Milnor Numbers of Deformations of Semi-Quasi-Homogeneous Plane Curve Singularities
The aim of this paper is to show the possible Milnor numbers of deformations of semi-quasi-homogeneous isolated plane curve singularity f. Assuming that f is irreducible, one can write f=∑qα+pβ ≥ pqcαβ xαyβ where cp0c0q≠0, 2≤p<q and p, q are coprime. We show that as Milnor numbers of deformations of f one can attain all numbers from μ(f) to μ(f)−r(p−r), where q≡r(mod p). Moreover, we provide an algorithm which produces the desired deformations