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Abstract Let K be an algebraically closed field and let K((XQ)) denote the field
of generalized series with coefficients in K. We propose definitions of the local
Łojasiewicz exponent of F = ( f1, . . . , fm) ∈ K[[X, Y ]]m as well as of the
Łojasiewicz exponent at infinity of F = ( f1, . . . , fm) ∈ K[X, Y ]m , which gener-
alize the familiar case of K = C and F ∈ C{X, Y }m (resp. F ∈ C[X, Y ]m), see
Chądzyński and Krasiński (In: Singularities, 1988; In: Singularities, 1988; Ann Polon
Math 67(3):297–301, 1997; Ann Polon Math 67(2):191–197, 1997), and prove some
basic properties of such numbers. Namely, we show that in both cases the exponent
is attained on a parametrization of a component of F (Theorems 6 and 7), thus being
a rational number. To this end, we define the notion of the Łojasiewicz pseudoexpo-
nent of F ∈ (K((XQ))[Y ])m for which we give a description of all the generalized
series that extract the pseudoexponent, in terms of their jets. In particular, we show
that there exist only finitely many jets of generalized series giving the pseudoexponent
of F (Theorem 5). The main tool in the proofs is the algebraic version of Newton’s
Polygon Method. The results are illustrated with some explicit examples.
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1 Introduction

Let f : (Rn, 0) → (R, 0) be a real analytic function. The Łojasiewicz Inequality
asserts that there exist ν, C > 0 such that

| f (x)| � Cdist(x, V ( f ))ν, x near 0, (1)

where V ( f ) stands for the zero set of f . The problem is to determine the smallest
possible exponent ν in (1). It is known that this exponent is rational [4] and equal to
the rate of growth of f on some analytic path centered near the origin [19]. In the
particular two-dimensional case the optimal exponent ν can be expressed in terms of
the Puiseux roots of f [14].

Now, let F : (Cn, 0) → (Cm, 0) be an analytic map with an isolated zero at the
origin. In this case a counterpart of the problem described above is to find an optimal
exponent in the inequality

|F(z)| � C |z|ν, (2)

where C is a positive constant and z is in a sufficiently small neighbourhood of 0.
This exponent is called the local Łojasiewicz exponent of F and is denoted by L0(F).
Again it is known that it is a rational number and

L0(F) = sup
�

ordF ◦ �

ord�
, (3)

where � runs through the set of all analytic paths centered in 0 ∈ Cn . Moreover, if F
is a regular sequence (i.e. n = m), then for generic direction � ∈ Pn−1 the exponent
L0(F) is attained on the curve F−1(�) (see [15] or [16] for a different proof of this
result). Another observation of this kind is the following

Theorem 1 ([8,10]) Let F := ( f1, . . . , fm), S := { f1 × · · · × fm = 0}. Then

L0(F) = inf{ν ∈ R : ∃ε,C>0∀z∈S |z| < ε ⇒ |F(z)| � C |z|ν}.

In particular, if F �= 0 and n = 2 then the local Łojasiewicz exponent of F is attained
on one of the curves { fi = 0}.

In other words,

L0(F) = ordt F(�(t))

ordt�(t)
,

where �(t) ∈ C{t}n\{0}, �(0) = 0 and fi (�(t)) = 0 for some non-zero fi .
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The Łojasiewicz exponent 489

If F : Cn → Cm is a polynomial map with finite number of zeroes, then it is
also possible to define so-called Łojasiewicz exponent of F at infinity (or global
Łojasiewicz exponent of F). Namely, we are looking for the greatest exponent ν in
the inequality (2), where C is a positive constant and z is outside a sufficiently big
ball. This optimal exponent is called the Łojasiewicz exponent of F at infinity and
is denoted by L∞(F). Similarly as in the local case, this exponent is rational and is
attained on a curve centered at infinity. More precisely, there exists a meromorphic
map� : E\{0} → Cn , whereE is the unit ball inC, such that limt→0 �(t) = ∞ and
L∞(F) is equal to the rate of growth of F on the image of �. Thus, we may write

L∞(F) = inf
�

ordt F(�(t))

ordt�(t)
, (4)

where � is as above and, in fact, the infimum is just the minimum. Moreover, the
following theorem holds:

Theorem 2 ([7,11]) Let F := ( f1, . . . , fm), S := { f1 × · · · × fm = 0}. Then

L∞(F) = sup{ν ∈ R : ∃R,C>0∀z∈S |z| > R ⇒ |F(z)| � C |z|ν}.

In particular, if F �= 0 and n = 2 then there exists a meromorphic map � : E\{0} →
Cn such that limt→0 �(t) = ∞, fi ◦ � = 0 for some non-zero fi and

L∞(F) = ordt F(�(t))

ordt�(t)
.

The main goal of the paper is to show that in the above theorems, at least in the two
dimensional case, one may replace the field C with an algebraically closed field of
arbitrary characteristic. Namely, let K be an algebraically closed field. The formu-
las (3) and (4) provide the definitions of local and global Łojasiewicz exponents in
K[[x1, . . . , xn]] and in K[x1, . . . , xn], respectively. Now, let n = 2. In this setting,
our main results are Theorems 6 and 7. They give direct two dimensional counterparts
of the above-mentioned Theorems 1 and 2.

Proofs of these theorems over C use metric properties of the field or, in the two
dimensional case, the Newton-Puiseux theorem, which is false in positive character-
istic. Thus, we cannot apply these methods. Our idea is to introduce, with the help of
the field of generalized seriesK((XQ)), some auxiliary notion (called the Łojasiewicz
pseudoexponent), which is, roughly speaking, the greatest vanishing order of the map
F = ( f1, . . . , fm) ∈ K((XQ))[Y ]m on all paths of the form (t, y(t)), y(t) ∈ K((tQ)).
It turns out (see Theorem 5) that this number is rational (if finite) and, what is more
important for us, it is the vanishing order of F on a path (t, y0(t)), where y0(t) is
a root of some f j . Moreover, in this theorem we prove that all the paths on which
the pseudoexponent is attained are similar to such (t, y0(t))’s in the sense of jets (see
Definition 6). Once Theorem 5 is proved, the only non-standard information needed
to deduce Theorems 6 and 7 is Proposition 3. This proposition explains the relation
between the valuations defined by two different types of parametrizations (namely the
standard Hamburger-Noether and the generalized ones).
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490 S. Brzostowski, T. Rodak

2 The abstract case of an arbitrary field

In the case of a fieldK of characteristic 0 one can apply the Newton-Puiseux theorem
to find the roots of an arbitrary f ∈ K((X))[Y ] (a polynomial with coefficients in the
Laurent series field) of positive degree. In short, K((t)) = K((t∗)), where K((t∗))
denotes the field of Puiseux series over the field K. The same is true for fields K of
positive characteristic p but only under the additional assumption that p � degY f (see
[2, Theorem 5.14]). Thus, in general, one needs to extend the fieldK((t∗)) even more
to find the algebraic closure of K((t)). We recall the following notion.

Definition 1 LetK be a field. ByK((tQ)) we will denote the field of all generalized
serieswith coefficients inK, that is formal sumsof the formu(t) = ∑

q∈Q uqtq , where
uq ∈ K and the support of u(t), Suppt u(t) := {

q ∈ Q : uq �= 0
}
, is a well-ordered

set.

The fact that the support of every element of K((tQ)) forms a well-ordered set
implies that K((tQ)) is indeed a field (with the natural definitions of addition and
multiplication), an overfield of K((t∗)). But even more is true.

Theorem 3 ([18, Theorem 5.2]) The algebraic closure of the field K((tQ)) is equal
to K((tQ)).

Although the fieldK((tQ)) is algebraically closed, it is much bigger than the actual
algebraic closure ofK((t)). The precise description ofK((t))was given byK.Kedlaya
in [13], but we will make no use of this description, working entirely in the larger field
K((tQ)).

An alternative way of parametrizing the “zero set” of an f ∈ K[[X, Y ]] of positive
order is by utilizing so-called Hamburger-Noether expansions. More precisely, the
following holds.

Theorem 4 (cf. [6,17]) Let K = K, f ∈ K[[X, Y ]], f (0) = 0. Then there exists a
pair (ϕ(t), ψ(t)) ∈ K[[t]]2\{0} with ϕ(0) = ψ(0) = 0, such that

f (ϕ(t), ψ(t)) = 0.

Conversely, for any pair (ϕ(t), ψ(t)) as above there exists an f ∈ K[[X ]][Y ], irre-
ducible as an element of K[[X, Y ]], with f (0) = 0 and such that

f (ϕ(t), ψ(t)) = 0.

The above theorem will also be extended to the case of a pair (ϕ(t), ψ(t)) ∈
K((t))2 (Proposition 2 below). Anyway, the discussion above motivates the following
definition (cf. also Definition 8).

Definition 2 Let K be a field. Any pair of the form (t, y(t)) with y ∈ K((tQ))

(resp. (ϕ(t), ψ(t)) ∈ K[[t]]2\{0}, ϕ(0) = ψ(0) = 0) will be called a generalized
(resp. formal) parametrization. We will say that such a pair is a generalized (resp.
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formal) parametrization of f iff f (t, y(t)) = 0 (resp. f (ϕ(t), ψ(t)) = 0), where
f ∈ K((XQ))[Y ] (resp. f ∈ K[[X, Y ]]).
We state now the natural generalizations of the classical definitions of the (local

and at infinity) Łojasiewicz exponents. Namely, we adapt (3) and (4) as the defining
conditions allowing � to run through the set of all formal parametrizations (resp.
parametrizations at infinity—cf. Definition 8).

Definition 3 Let K be a field. For an F ∈ K[[X, Y ]]m with F(0) = 0 we define the
local Łojasiewicz exponent of F as the number (or +∞) given by1

L0(F) := sup
�∈K[[t]]2

0<ord�<∞

ordt F ◦ �

ordt�
.

Similarly, for an F ∈ K[X, Y ]m we define the Łojasiewicz exponent of F at infinity
or the global Łojasiewicz exponent of F as the number (or −∞) given by

L∞(F) := inf
�∈K((t))2

ord�<0

ordt F ◦ �

ordt�
.

The main tool in the paper is the following notion of the Łojasiewicz pseudoexpo-
nent.

Definition 4 LetK be a field and let F ∈ K((XQ))[Y ]m . The (Łojasiewicz) pseudo-
exponent of F is the number (or +∞)

L̄Y (F) := sup
y(t)∈K((tQ))

ordt F(t, y(t)).

Note that the value of L̄Y (F) depends on the roles played by the variables X and
Y , however, as long as no confusion is likely, we will simply write L̄(F) instead of
L̄Y (F).

Remark 1 The above definitions can also be stated more generally – one can consider
the exponents with respect to an intermediate field L such that K ⊂ L ⊂ K. For
example, L could be a real closed field. We will not dive into this topic here.

3 Auxiliary results

3.1 Newton’s polygon method

We recall that for a non-zero series z ∈ K((tQ)) of the form z(t) = ∑
q∈Q zq tq there

are defined:

1 Throughout this paper, ord of a tuple means the minimal ord of its components.
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492 S. Brzostowski, T. Rodak

– Its order ordt z := min(Supp(z)),
– Its initial coefficient incot z := zordt z ,

– Its initial form infot z := incot z · tordt z .

Moreover, ordt0 := ∞, incot0 := 0, infot0 := 0.
FollowingAbhyankar [2]wewill use the symbol� to denote an unspecified (anony-

mous) non-zero element of a field under consideration.

Definition 5 Let z(t) ∈ K((tQ)), z(t) = ∑
q∈Q zq tq , let U be an indeterminate over

K((tQ)) and let L be an overfield of K(U ). We say that a series v(t) ∈ L((tQ)) is a
(Q, U )-deformation of z(t), if Q ∈ Q and

infot (v(t) − z(t)) = (U − zQ)t Q .

In other words, any series of the form v(t) = ∑
q∈Q vq tq where

– vq = zq for q < Q,
– vQ = U ,
– vq ∈ L for q > Q,

is a (Q, U )-deformation of z(t).
We begin with an algebraic restatement of Newton’s Polygon Method. It is a sim-

plified but generalized version of [2, Theorem 14.2], see also [5].

Proposition 1 (Newton’s polygon method) Let K be a field and let g ∈ K((XQ))

[Y ]\{0}. Write

g(X, Y ) = e(X)
∏

1� j�k

(Y − z j (X)) with e(X) ∈ K((XQ)), (5)

where z j (X) ∈ K((XQ)) for 1 � j � k (g(X, Y ) = e(X) �= 0 allowed).
Let u(t) := ∑

q�Q
q∈Q

uqtq ∈ K((tQ)), where Q ∈ Q, and let v(t) be any (Q, U )-

deformation of 0 ∈ K((tQ)). Then

→ infot g(t, u(t)+v(t)) is independent of the particular choice of the deformation
v(t)
→ For h := incot g(t, u(t) + v(t)) it is h ∈ K[U ]\{0} (and even h ∈ K(uq : q �
Q)[U ])
→ The following two conditions are equivalent:

(i) There exists 1 � j0 � k such that ordt (u(t) − z j0(t)) > Q
(ii) The polynomial h vanishes for U = 0

The following two conditions are equivalent:

(iii) For every 1 � j � k it is ordt (u(t) − z j (t)) < Q
(iv) The polynomial h is constant
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The Łojasiewicz exponent 493

What is more,

– If U = 0 is of multiplicity l > 0 as a root of h, then there exist exactly l different
indices j1, . . . , jl ∈ {1, . . . , k} for which

ordt (u(t) − z ji (t)) > Q, i = 1, . . . , l

– If degU h = m > 0, then there exist exactly m different indices j1, . . . , jm ∈
{1, . . . , k} for which

ordt (u(t) − z ji (t)) � Q, i = 1, . . . , m.

Proof It is easy to see that all the assertions of the theorem can be obtained from the
particular case g(X, Y ) = e(X)(Y − z(X)), where 0 �= e(X) ∈ K((XQ)), z(X) ∈
K((XQ)) (the theorem being obvious for g(X, Y ) = e(X)). However, for such a g
and any (Q, U )-deformation v(t) of 0 ∈ K((tQ)) we can take r := ordt (u(t) − z(t))
and s := ordt e(t) to obtain

infot g(t, u(t) + v(t))

= infot (e(t)(u(t) + v(t) − z(t))) = �

⎧
⎪⎨

⎪⎩

� tr+s ,

(U + �) t Q+s ,

Ut Q+s ,

if r < Q

if r = Q

ifr > Q

= � (δ
min(r,Q)
Q U + � δ

max(r,Q)
Q ) · tmin(r,Q)+s ,

where δ is the Kronecker delta, and the � ∈ K are independent of the choice of
v(t) as they are determined by the coefficients of u(t) − z(t) of order � Q. Hence,
h = incot g(t, u(t) + v(t)) ∈ K[U ] and h(0) = 0 iff r > Q, which gives “(i)⇔(ii)”.
Similarly, h is constant iff r < Q so “(iii)⇔(iv)”. The last two assertions are obvious.

We also remark that for a general g ∈ K((XQ))[Y ] the fact that h ∈ K(uq : q �
Q)[U ] follows immediately, since in particular h = incot g(t, u(t) + Ut Q).

Example 1 Let g(X, Y ) := Y p − X p−1Y − X p−1 ∈ K[X, Y ], where K is a field of
positive characteristic p. Then, following [1], we may write

g(X, Y ) =
p−1∏

j=0

(

Y − j X −
∞∑

k=1

X1−p−k

)

.

Put u(t) := ∑∞
k=1 t1−p−k

. Then g(t, u(t)) = 0. Let v(t) := Ut + · · · be a (1, U )-
deformation of 0 ∈ K((tQ)). We have g(t, u(t)+ v(t)) = U (U p−1 − 1)t p + · · · and
consequently h(U ) = incot g(t, u(t) + v(t)) = U (U p−1 − 1).

3.2 Jets and truncations

Definition 6 Let q ∈ Q and let us treat K((tQ)) as a K[[tQ]]-module. We define
the q-th order open jet space J̊ q = J̊ q [K((tQ))] of K((tQ)) as the module
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K((tQ))/(tq) and q -th order closed jet space J q = J q [K((tQ))] of K((tQ))

as the module

K((tQ))
/ ⋃

r>q
r∈Q

(tr ).

The union of the two types of q-th order jet spaces will be denoted by Jq =
Jq [K((tQ))].

Note that unlike e.g. the smooth functions case, the jet spaces defined above do not
constitute rings (the multiplication is not associative).

The elements of J q are called (q-th order) closed jets. A closed jet determined
by a series v will be denoted byJ q [v]. For any setS of generalized series the set of
closed jetsJ q [S ] is defined in the obvious way. Similarly, the elements of J̊ q are
called (q-th order) open jets. An open jet determined by a series v will be denoted by
J̊ q [v]. For any setS of generalized series the set of open jetsJ̊ q [S ] is defined in the
obvious way. Similarly, there is defined the set of jets Jq [S ] := J̊ q [S ] ∪J q [S ].
Notation 1 For a closed jet ι = J q [ϕ] the symbol ι̊ = ˚(J q [ϕ]) will denote the
interior of ι i.e. the jet J̊ q [ϕ]. Similarly, for any set A of closed jets we put Å := {ι̊ :
ι ∈ A}.

The jets have canonical representatives of the form
∑

s�q asts ∈ K((tQ)) (or
∑

s<q asts ∈ K((tQ)) in the case of open jets), nevertheless we find it useful to
distinguish these objects from one another.

Definition 7 Let ϕ ∈ K((tQ)) and q ∈ Q. If ϕ = ∑
s∈Q ϕs t s then we define the

q-th order closed truncation ϕ�q of ϕ as ϕ�q(t) := ∑
s�q ϕs t s and the q-th order

open truncation ϕ<q of ϕ as ϕ<q(t) := ∑
s<q ϕs t s . Thus ϕ�q ∈ J q [ϕ] and ϕ<q ∈

J̊ q [ϕ].
In the following, all the formulas involving truncations are to be understood in

the usual way (i.e. at the series level) while the formulas concerning jets are to be
understood as representative-independent (i.e. valid at the jet level), for example
this is the case with the formulas of the type ordt g(t, ι), where g ∈ K((XQ))[Y ] and
ι ∈ Jq .

Lemma 1 Let K be a field and m � 2. For any m-tuple F ∈ K((XQ))[Y ]m of co-
prime polynomials with degY F > 0 and any ϕ ∈ K((tQ)) the set A := {q ∈ Q :
ordt F(t, ϕ(t) + Utq) = ordt F(t, ϕ(t))} is non-empty. Moreover, there exists minA
and it is rational.

Proof Replacing F(X, Y ) with F(X, ϕ(X) + Y ) we may assume that ϕ(t) = 0. Let
F = ( f1, . . . , fm), where

fi (X, Y ) = ai0(X)Y di + · · · + aidi (X), ai0(X) �= 0, i = 1, . . . , m.
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Since f1, . . . , fm are co-prime, mini ordt aidi (t) = ordt F(t, 0) ∈ Q. On the other
hand, ordt F(t, Utq) = mini, j (ordt ai j (t) + q(di − j)). Thus,

A = {q ∈ Q : min
i, j

(ordt ai j (t) + q(di − j)) = min
i

ordt aidi (t)}.

Clearly,A �= ∅. Moreover, since di > 0 for some i , we infer that there exists minA .

Lemma 2 Let K be an infinite field. Let F ∈ K((XQ))[Y ]m, w ∈ K((tQ)) and
q ∈ Q. Then for every (q, U )-deformation v(t) of w(t) we have

ordt F(t, w(t) + Utq) = ordt F(t, v(t)).

Moreover, for any N ∈ Q the following conditions are equivalent:

1. ordt F(t, w(t) + Utq) � N,
2. ordt F(t, ϕ(t)) � N, for every representative ϕ(t) of J̊ q [w(t)].

Proof As in the proof of the previous lemma,wemay assume thatw(t) = 0.Moreover,
it is sufficient to prove only the case m = 1 and F �= 0. Write

F(X, Y ) = a0(X)Y d + · · · + ad(X).

We have

ordt F(t, Utq) = min
j

(ordt a j (t) + q(d − j)) = ordt F(t, Utq + ξ(t))

for any ξ ∈ L((tQ)), ordtξ(t) � q where L is an overfield of K(U ). This gives the
first part of the lemma.

“1⇒2” Take any representative ϕ(t) ∈ J̊ q [0]. Then one can write ϕ(t) =∑
r�q ϕr tr with ϕr ∈ K, so v(t) := (U − ϕq)tq + ϕ(t) is a (q, U )-deformation

of 0. By assumption and the first part of the proof, ordt F(t, v(t)) � N and substitut-
ing U = ϕq into this relation we obviously get

ordt F(t, ϕ(t)) � N .

“2⇒1” Let h(U )tα := infot F(t, Utq). Since h(U ) ∈ K[U ]\{0} and the field K is
infinite, there exists x0 ∈ K such that h(x0) �= 0. This implies that ordt F(t, x0tq) = α.
But x0tq ∈ J̊ q [0], so by assumption it is α � N .

3.3 Parametrizations

In what follows, we will utilize an even broader class of parametrizations than the
formal ones (cf. Definition 2). Namely, the following strengthening of Theorem 4
holds true.
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Proposition 2 Let K = K. For any f ∈ K((X))[Y ], degY f > 0, there exists a pair
(ϕ(t), ψ(t)) ∈ K((t))2 with ∞ > ordtϕ(t) > 0 such that

f (ϕ(t), ψ(t)) = 0.

Conversely, for any pair (ϕ(t), ψ(t)) as above there exists an irreducible f ∈
K[[X ]][Y ] with degY f > 0 and such that

f (ϕ(t), ψ(t)) = 0.

Proof “⇐” Let (ϕ(t), ψ(t)) ∈ K((t))2 with∞ > ordtϕ(t) > 0. If ordtψ(t) > 0 then
the existence of f is a direct consequence of Theorem 4. Similarily, it is easy to treat
the case ordtψ(t) = 0. Thus, we may assume that ordtψ(t) < 0 and use Theorem
4 to find a g ∈ K[[X ]][Y ]\{0} such that g (ϕ(t), 1/ψ(t)) = 0. Now it is enough to
put f := g(X, Y −1)Y a , for a big enough a ∈ N, to assure that f ∈ K[[X ]][Y ] and
f (ϕ(t), ψ(t)) = 0. Notice that the latter condition together with ordtϕ(t) < ∞ imply
that necessarily degY f > 0. Thus, we can factor f in K[[X ]][Y ] into irreducible
elements and replace f by an irreducible one that also vanishes at (ϕ(t), ψ(t)). By
the above remark, it has to be degY f > 0 also for the changed f .

“⇒” Let f ∈ K((X))[Y ], degY f > 0. Write f = a0(X)Y k + · · · + ak−1(X)Y +
ak(X). Note that by considering f (X, XαY ), where α ∈ Q�0, one can arrange
things so that r := min0� j�k−1(ordX a j (X)) < ordX ak(X) and then taking g :=
X−r f (X, XαY )wehave g∈ K[[X ]][Y ], degY g >0, g(0) = 0 and X � g inK[[X, Y ]].
Applying Theorem 4 to g we find a parametrization �(t) = (�1(t),�2(t)) ∈
K[[t]]2\{0} of g such that ordt�1(t) > 0. Also, ordt�1(t) < ∞, since other-
wise g(0,�2(t)) = 0, implying X | g in K[[X, Y ]]. Now it is enough to consider
(ϕ(t), ψ(t)) := (�1(t),�α

1 (t) · �2(t)) ∈ K((t))2 to fulfill the needed conditions.

Thus, it is natural to define what follows.

Definition 8 Let K be a field. Any pair of the form (ϕ(t), ψ(t)) ∈ K((t))2 with
∞ > ordtϕ(t) > 0 will be called a Laurent parametrization. If f ∈ K((X))[Y ] and
f (ϕ(t), ψ(t)) = 0 we will say that such a pair is a Laurent parametrization of f . For
f ∈ K[X, Y ] a pair (ϕ(t), ψ(t)) ∈ K((t))2 with ordt (ϕ(t), ψ(t)) < 0 and such that
f (ϕ(t), ψ(t)) = 0 will be called a parametrization of f at infinity.

The following property is immediate.

Corollary 1 Let K = K. For any f ∈ K[X, Y ], deg f > 0, there exists a parame-
trization of f at infinity.

Proof If degY f > 0, it is enough to consider f (X−1, Y ) and use Proposition 2 to
find (ϕ(t), ψ(t)) ∈ K((t))2 with ∞ > ordtϕ(t) > 0 such that f (ϕ(t)−1, ψ(t)) = 0.
Similarily for the case degX f > 0.

An important connection between the Laurent and the generalized parametrizations
is given in the proposition below. Note that the proof is mainly for the case of a field
K of positive characteristic, since otherwise a standard application of the Implicit
Function Theorem suffices.
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Proposition 3 Let K = K. Let (ϕ(t), ψ(t)) ∈ K((t))2 and (t, y(t)) ∈ K((tQ))2 be
a Laurent (resp. a generalized) parametrization of the same irreducible and monic
f ∈ K((X))[Y ]. Then for every g = g(X, Y ) ∈ K((X))[Y ] it is

ordt g(t, y(t)) = ordt g(ϕ(t), ψ(t))

ordtϕ(t)
. (6)

Proof Consider the fieldE := K((t))[Y ]/( f (t,Y )) ∼= K((t))(y(t)). It is a finite extension
of the field F := K((t)). Define v1, v2 : E → R ∪ {∞} by the formulas

v1([g]) := ordt g(ϕ(t), ψ(t))

ordtϕ(t)
and v2([g]) := ordt g(t, y(t)), (7)

where g = g(t, Y ) ∈ K((t))[Y ]. Since both (ϕ(t), ψ(t)) and (t, y(t)) are parame-
trizations of f , it is easy to see that v1 and v2 are correctly defined (recall also that by
definition ordtϕ(t) �= 0).

We claim that v1, v2 are valuations on the field E. Indeed, most of the needed
conditions follow at once from the corresponding properties of the order function.
The only thing worth a closer look is the implication: “vi ([g]) = ∞ ⇒ [g] = 0”. For
v2 this is immediate, because f (t, Y ) is the minimal polynomial of y(t) over F, so
g(t, y(t)) = 0 implies f (t, Y ) | g inF[Y ]. For v1, let g(ϕ(t), ψ(t)) = 0 and consider
the set I := {h ∈ F[Y ] : h(ϕ(t), ψ(t)) = 0}. Obviously, this is an ideal in F[Y ],
which itself is a PID, so it is generated by a single element f̃ ∈ F[Y ]. But f (t, Y ) is
irreducible in F[Y ] and also belongs to I . Hence, f (t, Y ) ∼ f̃ . Since g ∈ I , we
thus conclude that f (t, Y ) | g and [g] = 0.

Now, observe that for h = h(t) ∈ F it is

v1([h]) = ordt h(ϕ(t))

ordtϕ(t)
= ordt h(t) = v2([h]). (8)

Define | · |i := 2−vi (·), i = 1, 2. Then | · |1, | · |2 are two absolute values on the field
E, that by (8) agree on the subfield F with the absolute value | · | := 2−ordt (·). Since
the extension E ⊃ F is finite and (F, | · |) is complete (| · | defines the usual t-adic
topology on F), we can apply [12, Thm. 9.8] to conclude that | · |1 = | · |2. But this
means that also v1 = v2. Now (6) follows from (7).

Remark 2 Let K = K. It is well-known that if f, g ∈ K[[X, Y ]], f (0) = g(0) = 0
and f is irreducible, then the Hilbert-Samuel multiplicity of ( f, g) is given by the
formula

e( f, g) = ordt g(ϕ(t), ψ(t)),

where (ϕ(t), ψ(t)) is a formal parametrization of f (see e.g. [17, Thm. 3.14]). From
Proposition 3 it follows that in a generic coordinate system we have
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e( f, g) = ord(X,Y ) f (X, Y )ordt g(t, y(t)),

where (t, y(t)) is a generalized parametrization of f .

4 Main results

We start with a general result concerning the pseudoexponent L̄. It contains, inter alia,
a description of all the jets extracting the pseudoexponent, a result that is inspired by
[14], where the classical case of germs of functions (in the real analytic setting) has
been considered.

Theorem 5 Let K = K. Then for every tuple F = ( f1, . . . , fm) ∈ K((XQ))[Y ]m

with degY F > 0 the Łojasiewicz pseudoexponent of F is attained on a generalized
parametrization of a component of F. Furthermore, if m � 2 and f1, . . . , fm are co-
prime (as polynomials), then there exists a set J̊ ⊂ ⋃

q∈Q J̊ q of open jets of K((tQ))

such that:

(a) J̊ is non-empty and finite,
(b) For every ι̊ ∈ J̊ there exists a root w ∈ K((tQ)) of some f j (t, Y ) �= 0 representing

ι̊, i.e. ι̊ = J̊ q [w] for some q ∈ Q, with

L̄(F) = ordt F(t, w(t)) = ordt F(t, ι̊),

(c) For every ϕ ∈ K((tQ)) it is

L̄(F) = ordt F(t, ϕ(t)) ⇔ J̊ q [ϕ] ∈ J̊ for some q ∈ Q.

Proof It is clear that we can assume that f1(t, Y ), . . . , fm(t, Y ) have no common root
in K((tQ)). Also, it is enough to consider the case of all the f j being non-zero. Let
{ui j } ⊂ K((tQ)) be the set of all the roots of f1(t, Y ) × · · · × fm(t, Y ); precisely,
let fi (t, ui j (t)) = 0 for 1 � i � m, 1 � j � li (here, possibly, some – but not all –
li = 0 for a constant fi ). Define

L̃ := sup
1�i�m

(
sup

1� j�li

ordt F(t, ui j (t))
)
.

By the assumptions,−∞ < L̃ < ∞.We claim that L̃ = L̄(F). Take anyw ∈ K((tQ))

different from all the ui j and let ρ := max
i, j

(ordt (w(t) − ui j (t))) ∈ Q.

Let z(t) be any (ρ, U )-deformation of 0. It is

infot fi (t, w
�ρ(t) + z(t)) = Pi (U )tαi , (9)

where Pi ∈ K[U ], αi ∈ Q and i = 1, . . . , m. By Proposition 1 and the definition of
ρ, the polynomials P1, . . . , Pm do not vanish at U = 0. Since (9) is valid in particular
for z(t) := Utρ + (w(t) − w�ρ(t)), by taking U = 0 in these equalities we see that

infot fi (t, w(t)) = � tαi , for i = 1, . . . , m,
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– and consequently that –

ordt (F(t, w(t))) = min(α1, . . . , αm). (10)

On the other hand, one can take z(t) := Utρ + (u(t)−u�ρ(t)), where u(t) ∈ {ui j (t)}
is chosen in such a way that ρ = ordt (w(t) − u(t)). Let u(t) = ∑

q∈Q uqtq and
w(t) = ∑

q∈Q wq tq . Then

w�ρ(t) + z(t) = w�ρ(t) − u�ρ(t) + Utρ + u(t) = (U + wρ − uρ)tρ + u(t).

Thus, (9) takes the form

infot fi (t, u(t) + (U + wρ − uρ)tρ) = Pi (U )tαi ,

so putting U = uρ − wρ we conclude that

ordt ( fi (t, u(t))) � αi , for i = 1, . . . , m,

and so

ordt F(t, u(t)) � min(α1, . . . , αm). (11)

But since u(t) ∈ {ui j (t)}, using (10, 11) and the definition of the number L̃ we get

L̃ � ordt F(t, u(t)) � ordt F(t, w(t)). (12)

Now,w(t)was an arbitrary element ofK((tQ))\{ui j (t)}. Since the resulting inequality
clearly holds for w(t) ∈ {ui j (t)} by the very definition of L̃, it holds for any w(t) ∈
K((tQ)). Thus,

L̃ � L̄(F).

Since the other inequality is obvious, the first assertion of the theorem is proved.
Notice also that from the above reasoning one can actually deduce more:

Claim For every w ∈ K((tQ))\{ui j } such that ordt F(t, w(t)) = L̄(F), if ρ :=
sup
i, j

(ordt (w − ui j )) then

L̄(F) = ordt F(t, J̊ ρ[w(t)]). (13)

Indeed, by assumption w �∈ {ui j }. Hence, using the notations of (9), by (12) and
(10) we see that in such a case

L̄(F) = ordt F(t, u(t)) = ordt F(t, w(t)) = min(α1, . . . , αm)

= ordt F(t, w�ρ(t) + z(t)),
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for any (ρ, U )-deformation z(t) of 0. In particular, one can take z(t) := Utρ +
(w(t) − w�ρ(t)). By Lemma 2, for every representative ϕ of J̊ ρ[w(t)] we have
ordt F(t, ϕ(t)) � L̄(F). Now, the definition of L̄(F) implies that (13) holds.

For the rest of the reasoning, let M := {ui j : ordt F(t, ui j (t)) = L̄(F)}, and if
w ∈ M let q(w) := min{q ∈ Q : ordt F(t, w(t) + Utq) = L̄(F)}. Note that by
Lemma 1 the number q(w) is properly defined.We define J̊ := {J̊q(w)[w] : w ∈ M }.
Of course, the set J̊ is finite and non-empty by the first part of the proof, so a) holds.

Now, let ι̊ ∈ J̊ and let w ∈ M be such that ι̊ = J̊q(w)[w]. Since

ordt F(t, w(t) + Utq(w)) = L̄(F),

by Lemma 2 and the definition of L̄(F) for every representative ϕ of ι̊ we have

ordt F(t, ϕ(t)) = L̄(F).

This proves b).
Considering item c). The implication “⇐” follows from b). So, assume that L̄(F) =

ordt F(t, ϕ(t)) for some ϕ ∈ K((tQ)). If ϕ is one of the ui j ’s, it belongs to M ,
so J̊q(ϕ)[ϕ] ∈ J̊. Now let ϕ �∈ {ui j }. It means that, as before, we can put ρ :=
supi, j (ordt (ϕ − ui j )) ∈ Q. Now take any u ∈ {ui j } such that ordt (ϕ − u) = ρ. Since

then J̊ ρ[ϕ] = J̊ ρ[u], by the Claim we must have

ordt F(t, J̊ ρ[u]) = L̄(F),

so also ordt F(t, u(t)) = L̄(F). In particular, u ∈ M . Moreover, by Lemma 2 it is also
ordt F(t, u(t) + Utρ) = L̄(F). Hence, the definition of q(u) implies that q(u) � ρ.
But this means that J̊q(u)[ϕ] = J̊q(u)[u] ∈ J̊.

Corollary 2 Let K = K. For every tuple F = ( f1, . . . , fm) ∈ K((XQ))[Y ]m the
pseudoexponent L̄(F) is a rational number (or +∞).

Proof If degY F � 0 then F ∈ K((XQ))m and we have L̄(F) = supy(t)∈K((tQ))

F(t, y(t)) = ordt F(t) ∈ Q∪{+∞}. If degY F > 0 and f1, . . . , fm are co-prime then
by Theorem 5 there exists w(t) ∈ K((tQ)) such that L̄(F) = ordt F(t, w(t)) ∈ Q.
Lastly, if h| f j , j = 1, . . . , m, where h ∈ K((XQ))[Y ] and degY h > 0 then by
Theorem 3 there exists y(t) ∈ K((tQ)) such that h(t, y(t)) = 0. This gives L̄(F) =
+∞.

Example 2 LetKbe an algebraically closedfield.Consider F := (Y−∑
2�q X1−1/q−

X, (Y − ∑
2�q X1−1/q)2) ∈ K((XQ))[Y ]2. By the theorem, one easily sees that

L̄(F) = max{1, 2} = 2 and the exponent is realized only by the parametrization of
the first component of F , that is by (t, y(t)) := (t,

∑
2�q t1−1/q + t). It follows that

q(y) = 2 and J̊ = {J̊ 2[y]} (see the proof of Theorem 5).
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Theorem 6 Let K = K. Then for any F = ( f1, . . . , fm) ∈ K[[X, Y ]]m, such that
F(0) = 0, there exists a formal parametrization �(t) of some f j such that

L0(F) = ordt F(�(t))

ordt�(t)
.

Proof Wemay assume that all f j are non-zero. Moreover, using Weierstrass Prepara-
tion Theorem (after possible change of variables) we may assume that for each f j we
have f j (X, Y ) ∈ K[[X ]][Y ], ord(X,Y ) f j (X, Y ) = degY f j (X, Y ) > 0. Observe that
if (t, y(t)) (resp. (ϕ(t), ψ(t))) is a generalized (resp. formal) parametrization of some
f j then ordt y(t) � 1 (resp. ordtψ(t) � ordtϕ(t), ϕ(t) �= 0). Thus, by Theorems 4, 5
and Proposition 3 we have

L̄(F) = sup
y(t)∈K((tQ))

ordt F(t, y(t))

= sup
{
ordt F(t, y(t)) : (t, y(t)) is a generalized parametrization of some f j

}

= sup
{
ordt F(ϕ(t),ψ(t))
ordt (ϕ(t),ψ(t))

: (ϕ(t), ψ(t)) is a formal parametrization of some f j

}

� L0(F) � L̄(F).

This ends the proof.

Theorem 7 Let K = K. Then for any polynomial map F = ( f1, . . . , fm) ∈
K[X, Y ]m there exists a parametrization at infinity �(t) of some f j such that

L∞(F) = ordt F(�(t))

ordt�(t)
.

Proof We may assume that all f j are non-zero and (after change of variables) that all
of them satisfy

deg(X,Y ) f j (X, Y ) = degY f j (X, Y ).

More specifically,

f j (X, Y ) = Y d j + a j,1(X)Y d j −1 + · · · + a j,d j (X),

where degX a j,k(X) � k. Observe that

L∞(F) = inf
{
ordt F(ϕ(t),ψ(t))

ordt ϕ(t)
: ϕ(t), ψ(t) ∈ K((t)),

ordtϕ(t) � ordtψ(t), ordtϕ(t) < 0
}

and

f j (ϕ(t), ψ(t)) = 0 ∧ ordt (ϕ(t), ψ(t)) < 0 ⇒ ordtϕ(t) � ordtψ(t). (14)
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Let F̃ = ( f̃1, . . . , f̃m), where f̃ j (X, Y ) = f j (X−1, Y ). Using Proposition 3 we get
L∞(F) � −L̄(F̃). By Theorem 5 there exists y0(t) ∈ K((tQ)) such that L̄(F̃) =
ordt F̃(t, y0(t)) and f̃ j0(t, y0(t)) = 0 for some j0. Let (by Propositions 2 and 3)
(ϕ0(t), ψ0(t)) ∈ K((t))2 be a Laurent parametrization of f̃ j0 such that for every
g = g(X, Y ) ∈ K((X))[Y ] it is

ordt g(t, y0(t)) = ordt g(ϕ0(t), ψ0(t))

ordtϕ0(t)
.

Put �(t) := (1/ϕ0(t), ψ0(t)). Since ordtϕ0(t) > 0, �(t) is a parametrization at infinity
of f j0 . Moreover, by (14) we have ordt� = ordt1/ϕ0. Consequently,

L∞(F) � −L̄(F̃) = −ordt F̃(t, y0(t))

= −ordt F̃(ϕ0(t), ψ0(t))

ordtϕ0(t)
= ordt F(�(t))

ordt�(t)
� L∞(F).

The following two examples demonstrate how to use the above theorems to calculate
the Łojasiewicz exponent.

Example 3 A. Płoski in [16] proved that a rational number is equal to the Łojasiewicz
exponent of a holomorphic mapping of C2 if and only it appears in the sequence

1, 2, 3, 4, 4
1

3
, 4

1

2
, 4

2

3
, 5, . . .

that is, is a positive integer or of the form N + b
a , where 0 < b < a < N , a, b, N ∈ Z.

LetKbe an algebraically closedfield.Wewill check that anynumber from the above
sequence is realized as the local Łojasiewicz exponent of some pair F ∈ K[[X, Y ]]2.
It is immediate to see from the definition of the local Łojasiewicz exponent that
L0(X N , Y ) = N . Following Płoski, let us consider F := (Y a − Xa+1, X N−bY b).
Observe that all the formal parametrizations of the second component of F are of the
form (ϕ(t), 0) or (0, ψ(t)). The first component factors as

Y a − Xa+1 =
∏

εa=1
ε∈K

(
Y − εX1+ 1

a

)α

,

for some α � 1, and so by Proposition 3 we may assume that its formal parametriza-
tions are of the form (ta, εta+1). Since

ordt F(ϕ(t), 0)

ordt (ϕ(t), 0)
= a + 1,

ordt F(0, ψ(t))

ordt (0, ψ(t))
= a,

ordt F(ta, εta+1)

ordt (ta, εta+1)
= N + b

a
,

by Theorem 6 we get that L0(F) = N + b
a .

Example 4 Let K be an algebraically closed field. Inspired by [9] let us consider
F := ((X + Y q)p−1, Y p−1 − (X + Y q)p−1Y q−1) ∈ K[X, Y ]2, where p � 2, q � 1,
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p, q ∈ Z. It is clear that if �(t) := (ϕ1(t), ϕ2(t)) ∈ K((t))2 is a parametrization
at infinity of the first component of F , then ordtϕ1(t), ordtϕ2(t) < 0 and hence
ordt�(t) = ordtϕ1(t). Consequently,

ordt F(�(t))

ordt�(t)
= (p − 1) · ordtϕ2(t)

ordtϕ1(t)
= p − 1

q
.

Now, let 
(t) := (ψ1(t), ψ2(t)) ∈ K((t))2 be a parametrization at infinity of the

second component of F . If 
(t) = (ψ1(t), 0) then we get ordt F(
(t))
ordt 
(t)

= p − 1,

which is bigger than p−1
q and hence can be discarded for the computation of L∞(F)

(cf. Definition 3). It follows that 1 − (ψ1(t) + ψ
q
2 (t))p−1ψ

q−p
2 (t) = 0 with ψ2 �= 0.

Using this relation we get ordt (ψ1(t) + ψ
q
2 (t)) = p−q

p−1 · ordtψ2(t), and this for

ordtψ2(t) < 0 implies that ordt (ψ1(t) + ψ
q
2 (t)) � ordtψ2(t) � ordtψ

q
2 (t), the

inequalities being strict if q > 1. Consequently, we easily see that the only possibilities
are

ordt
(t) =
{
ordtψ1(t), if q > 1

ordtψ2(t), if q = 1

=

⎧
⎪⎨

⎪⎩

p−q
p−1 · ordtψ2(t), if ordtψ2(t) � 0, q > 1 and p < q

q · ordtψ2(t), if ordtψ2(t) < 0 and q > 1

ordtψ2(t), if q = 1

.

Again because of the relation 
 satisfies, we get

ordt F(
(t))

ordt
(t)
= ordtψ

p−q
2 (t)

ordt
(t)

=

⎧
⎪⎨

⎪⎩

p − 1, if ordtψ2(t) � 0, q > 1 and p < q
p−q

q , if ordtψ2(t) < 0 and q > 1

p − q, if q = 1

� p

q
− 1.

Now, since it is an easy matter to actually find parametrizations 
 giving equality in
the above formula, we conclude by Theorem 7 that

L∞(F) = min

{
p − 1

q
,

p

q
− 1

}

= p

q
− 1.

Similarly, one can check that for G := (X p−q−1Y q+1, X p−qY q − 1) ∈ K[X, Y ]2,
with p > q > 0, p, q ∈ Z, we have

L∞(G) = − p

q
.

Finally, we immediately see that L∞(X, X Y − 1) = −1.
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Summing up, L∞ takes all rational numbers as its values, over any algebraically
closed field K.

We end the paper by asking the following:

Question 1 Can Example 3 be strengthened – are the numbers N + b
a , where 0 < b <

a < N , a, b, N ∈ Z, all the possible (finite) Łojasiewicz exponents L0(F) that can
be realized for F ∈ K[[X, Y ]]2, for every algebraically closed fieldK?

Question 2 Is our definition of the local Łojasiewicz exponent equivalent to Lejeune
and Teissier’s “integral closure definition” used in [3], or to Płoski’s “characteristic
polynomial definition” (cf. [16]), for every algebraically closed field K?

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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(eds.) Analytic and Algebraic Geometry, Wydawnictwo Uniwersytetu Łódzkiego, pp. 115–134 (2013)
18. Ribenboim, P.: Fields: algebraically closed and others. Manuscr. Math. 75(2), 115–150 (1992)
19. Spodzieja, S.: The Łojasiewicz exponent of subanalytic sets. Ann. Polon. Math. 87, 247–263 (2005)

123


	The Łojasiewicz exponent over a field of arbitrary characteristic
	Abstract
	1 Introduction
	2 The abstract case of an arbitrary field
	3 Auxiliary results
	3.1 Newton's polygon method
	3.2 Jets and truncations
	3.3 Parametrizations

	4 Main results
	References




