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Abstract The aim of this paper is to show the possible Milnor numbers of defor-
mations of semi-quasi-homogeneous isolated plane curve singularity f . Assuming
that f is irreducible, one can write f = ∑

qα+pβ ≥ pq cαβ xα yβ where cp0c0q �= 0,
2 ≤ p < q and p, q are coprime. We show that as Milnor numbers of deformations
of f one can attain all numbers from μ( f ) to μ( f )− r(p− r), where q ≡ r(mod p).
Moreover, we provide an algorithm which produces the desired deformations.
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Introduction

The main goal of this paper is to identify all possible Milnor numbers attained by
deformations of plane curve singularities. This question is closely related to some
of Arnold’s problems (Arnold 2004), most notably Problems 1975–15 and 1982–12.
Adirectmotivation for our studywas a talk ofArkadiuszPłoski on recent developments
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and open questions regarding jumps of Milnor numbers given at the Łódź-Kielce
seminar in June 2013 as well as questions posed by Arnaud Bodin in Bodin (2007).

The most interesting point is establishing the initial Milnor jumps i.e. the greatest
Milnor numbers attained by deformations. As was shown in general in Guseı̆n-Zade
(1993) and explicitly for special cases in Brzostowski and Krasiński (2014), it is
possible that not all Milnor numbers are attained, meaning that the jumps may be
greater than one. Moreover, in these cases the Milnor numbers that are not attained
give exactly the first jump greater than one. These results are related to bounds on
Milnor numbers of singularities and refer to questions on possible Milnor numbers of
singularities of given degree, see for instance (Płoski 2014) or (Greuel et al. 2007).
Moreover, the fact that the first jump is not equal one has in turn interesting implications
for multiparameter versal deformations and adjacency of μ-constant strata (Arnold
2004).

In this paper we provide an algorithmic way of finding a sequence of the
highest numbers attained as Milnor numbers of deformations of a given semi-quasi-
homogeneous irreducible plane curve singularity, see Theorems 1.1 and 4.1. The
approach presented here stems from the observation that many properties of the
sequence of Milnor numbers attained by deformations of a singularity are possible to
be established combinatorially, a fact that was not in our opinion sufficiently explored.
A careful analysis shows that for semi-quasi-homogeneous singularities the problem
boils down to three cases. Namely, if wewrite singularity f as

∑
qα+pβ ≥ pq cαβ xα yβ ,

where cp0c0q �= 0 and 2 ≤ p < q, then the study depends on the greatest common
divisor of p and q: whether it is equal to either 1 or min{p, q} or lies between these
values. The irreducible case in such a setting is equivalent to saying that p and q
are coprime. We show that in the irreducible case r(p − r) initial jumps of Milnor
numbers are equal to one, where q ≡ r(mod p). This result, on its own, can be
used iteratively for many singularities to prove that all jumps are equal to one, as
shown in Sect. 5. On the other hand, we think of this paper as an introduction to
more general results based on the observation that if the procedure presented here is
adjusted, it implies also solutions in general in the other two cases mentioned above.
For instance, given an isolated singularity f of the form (1) with GCD(p, q) = g
such that 1 < g < p, one can show that the first jump is not bigger than g (as was
already shown in Bodin (2007) andWalewska (2010)) but all Milnor numbers ranging
from μ( f ) − g to μ( f ) − g − r(p − r) + 1 can be attained by deformations of f
(under notation q ≡ r(mod p)). We defer the details to a subsequent publication, see
Michalska and Walewska 2016b. One would also like to note that parallel and com-
plimentary research of the problem of jumps of Milnor numbers is in recent papers
(Michalska and Walewska 2016a) or Brzostowski et al. (2018).

This article is organised as follows. First, we state the main result. In Sect. 2 we
begin with introducing notation that we hope will provide more clarity to further
considerations. In paragraphs 2.2 and 2.3 we recall some properties of the Newton
diagram and Newton numbers. General combinatorial remarks and a reminder on
Euclid’s algorithm follow in paragraphs 2.4, 2.5 and 2.6.

Section 3 presents steps needed in the proof of Theorem 1.1. It is divided into three
parts. In Sect. 3.1 we prove validity of Procedure 1 that gives minimal jumps and
allows to substitute p and q by smaller numbers obtained from Euclid’s algorithm
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(more precisely, respectively by n(a − a′) + a′ and n(b − b′) + b′ from table (3)). In
Sect. 3.2 we prove an iteration of this procedure, that is Procedure 2, is valid and gives
minimal jumps until p, q are recursively reduced to numbers corresponding to the
next-to-last step of Euclid’s algorithm (respectively numbers n′a′ + a′′ and n′b′ + b′′
from table (3)). Whereas in Sect. 3.3 we deal with the case (or the last line in Euclid’s
Algorithm) when q ≡ ±1(mod p).

Section 4 brings the procedures together to prove Theorem 4.1. The main
Theorem1.1 follows immediately. The article concludeswith some remarks and obser-
vations on further developments.

1 Statement of the Main Result

Throughout this paper we will consider an isolated plane curve singularity f i.e. the
germ f : (C2, 0) → (C, 0) is analytic and 0 is the only solution of the system of
equations ‖∇ f (x, y)‖ = f (x, y) = 0. By a deformation of f we mean any analytic
function F : (C3, 0) → C such that F(0, ·) = f and F(t, ·) is an isolated singularity
for every t small enough.

The Milnor number μ( f ) of an isolated singularity f is the multiplicity of ∇ f at
zero. A classic result is that theMilnor number of a deformation F of f always satisfies
the inequality μ( f ) ≥ μ(F(t, ·)) for t small enough, see for instance (Greuel et al.
2007). Hence it makes sense to consider the strictly decreasing sequence (μi )i=0,...,w
of all positive integers attained as Milnor numbers of deformations of f . We have
μ0 = μ( f ) and μw = 1. The sequence of positive integers (μi−1 − μi )i=1,...,w will
be henceforth called the sequence of jumps of Milnor numbers.

We will consider the isolated singularity f of the form

f = xεx yεy
∑

qα+pβ ≥ pq

cαβ xα yβ (1)

for some positive integers p, q, where cp0c0q �= 0 and εx , εy ∈ {0, 1}.
Theorem 1.1 Given a nondegenerate isolated singularity f of the form (1)with p < q
coprime the sequence of Milnor jumps begins with

1 , . . . , 1
︸ ︷︷ ︸

r(p−r)

where r is the rest out of division of q by p.

Proof The proof follows immediately from Kouchnirenko’s theorem (see Fact 2.1)
and the minimality of the jumps in Theorem 4.1. ��

As a special case a direct generalisation of (Bodin 2007, Theorem 2) follows.
Namely

Corollary 1.2 Given an irreducible nondegenerate isolated singularity, the claim of
Theorem 1.1 holds.
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Indeed, if f is nondegenerate of the form (1), εx = εy = 0, p, q are coprime
and cp,0c0,q �= 0, then f is irreducible. On the other hand, for any nondegenerate
irreducible isolated singularity f , it is of the form (1) with εx = εy = 0 for some p, q
coprime and cp,0c0,q �= 0.

2 Preliminaries on Combinatorial Aspects

2.1 Notations

The Newton diagram of a set of points S is the convex hull of the set

⋃

P∈S

(
P + R

2+
)

.

We will refer to Newton diagrams simply as diagrams. Since every Newton diagram
is uniquely determined by the compact faces of its border, we will often refer only to
these compact faces.

We say that a diagram � is supported by a set S if � is the smallest diagram
containing every point P ∈ S. We say that � lies below � if � ⊂ �.

Let us denote by (P1, . . . , Pn) a diagram supported by points P1, . . . , Pn . If � is a
diagram supported by a set S we will write � + (P1, . . . , Pn) for a diagram supported
by S∪{P1, . . . , Pn}. Any such diagramwill be called a deformation of the diagram �.

If P = (p, 0), Q = (0, q) then any translation of the segment P, Q will be denoted
as �(p, q), in other words

�(p, q) := hypotenuse of a right triangle with base

of length p and heigth q

we will write n�(p, q) instead of�(np, nq). Moreover, for�(p1, q1), . . . ,�(pl , ql)
denote by

(−1)k ( �(p1, q1) + · · · + �(pl , ql))

any translation of a polygonal chain with endpoints Q, Q + (−1)k[p1,−q1], . . . ,

Q + (−1)k
[∑l

i=1 pi , −∑l
i=1 qi

]
.

Note thatwhether Q is the highest point in the chain depends on the sign of (−1)k . In
particular, if (−1)k = 1 we list the segments from top to bottom and if the sequence of
the slopesqi/pi is increasing, then�(p1, q1)+· · ·+�(pl , ql) is aNewtondiagram.We
will also write �(P, Q) instead of �(p, q) when we want to indicate fixed endpoints
P and Q of the segment �(p, q).

2.2 Newton Diagrams of Singularities

We say that� is theNewton diagramof an isolated singularity f (x, y) = ∑
i, j ci j x

i y j

if � is the diagram supported by the set supp f := {P ∈ Z
2 : cP �= 0}. In such a case

we denote it by �( f ). We will say that f is nondegenerate if it is nondegenerate in the
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sense of Kouchnirenko, see (Kouchnirenko 1976). Note that (Wall 1999) defines non-
degeneracy differently but the definitions are equivalent in dimension 2, see (Greuel
and Nguyen 2012).

A Newton diagram of an isolated singularity is at distance at most 1 from any axis.

2.3 Newton Numbers

For a diagram � ⊂ R
2+, such that it has common points with both axis, its Newton

number ν(�) is equal to

2A − p − q + 1,

where A is the area of the compliment R2+ \ � and p, q are the non-zero coordinates
of the points of intersection.

For any diagram � ⊂ R
2+ let νp,q(�) be the Newton number of a Newton diagram

of � + {(p, 0), (0, q)}. Note that if � is a diagram of an isolated singularity, then
the definition does not depend on the choice of p or q if they are large enough, see
(Lenarcik 2008). Hence the Newton number ν(�) = νp,q(�), where p, q sufficiently
large, is well defined for any Newton diagram of an isolated singularity.

The motivation to study Newton numbers was given by Kouchnirenko in Kouch-
nirenko (1976). In particular,

Fact 2.1 For an isolated nondegenerate singularity the Newton number of its diagram
and its Milnor number are equal.

Similarly as for Milnor numbers, for a diagram � consider the strictly decreasing
sequence (νi )i=0,...,s of positive integers attained as Newton numbers of deformations
of �. Of course, ν0 = ν(�) and νs = 1. The sequence (νi−1 − νi )i=1,...,s is the
sequence of minimal jumps of Newton numbers.

Now for two useful properties.

Property 2.2 (1) If � lies below �, then for any system of points P1, . . . , Pn the
diagram � + (P1, . . . , Pn) lies below � + (P1, . . . , Pn) and the diagrams have
common endpoints provided � and � had common endpoints.

(2) If� lies below� and they have common endpoints and both are Newton diagrams
of isolated singularities, then the difference of Newton numbers νp,q(�)−νp,q(�)

is equal twice the area of the difference � \ �.

2.4 General Combinatorial Remarks

Since a Newton number can be computed from the diagram, we will give some classic
combinatorial tools that will help us in doing so.

Fact 2.3 (Pick’s Formula) The area of a polygon with vertices from the lattice Z2 is
equal to

B

2
+ W − 1,
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where B is equal to the number of points of the lattice Z2 which lie on its border and
W is the number of points of the lattice Z2 which lie in the interior.

Remark 2.4 (Tile Argument) Consider a rhomboid R(p, q) with vertices (p, 0), (p−
a, b), (0, q), (a, q − b), where bp − aq = ±1. The family

R(p, q) = {R(p, q) + i[a,−b] + j[−(p − a), q − b] : i, j ∈ Z}

covers the real plane and consists of rhomboids with pairwise disjoint interiors. More-
over, every point in Z2 is a vertex of some rhomboid from this family.

Indeed, since the area of R(p, q) is |pq − bp − (p − a)q| = 1, Pick’s Formula
implies that R(p, q) ∩ Z

2 is equal to the set of four vertices of R(p, q). The rest
follows immediately.

2.5 EEA

Let us recall the Extended Euclid’s Algorithm. Let p, q be as above i.e. coprime and
p, q �= 1.

Fact 2.5 (Extended Euclid’s Algorithm) Take positive integers p and q which are
coprime and q > p. The EEA goes as follows

variables P Q A′ A B ′ B N

initial condition p q 0 1 1 0
⌊
q
p

⌋

as long as P �= 0 substitute Q − N P P A − N A′ A′ B − N B ′ B ′
⌊

P
Q−N P

⌋

the output line P = 0 0 1 ± p ∓ a ∓ q ± b 0

Positive integers a, b in the last line are such that a < p, b < q and |bp − aq| = 1.

Here �x� denotes the integer part of a number x ∈ R.
Wewill adjust the algorithm to our needs. Reverse the order of the lines and number

them from 0 for the output line to k0 +2 for the initial conditions line (we always have
at least three lines, hence k0 ≥ 0). Note that a0 = p, b0 = q and we get a modified
table

p q
a1 b1 n1
...

...
...

ak0+1 bk0+1 nk0+1
ak0+2 bk0+2

(2)
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which consists of columns A′, B ′ and N from original EEA in reverse order and
dropping the signs. Note that a1 = a and b1 = b.

Consider an example that we will use as an illustration throughout this paper.

Example 2.6 For p = 40 and q = 73 we have k0 = 4 and

40 73
17 31 2
6 11 2
5 9 1
1 2 4
1 1 1
0 1

In particular, 31 · 40 − 17 · 73 = −1 = (−1)4−0+1.

We will list some properties of EEA adjusted to our notations.

Property 2.7 (1) The values in the last two lines are always

ak0+1 = 1, bk0+1 =
⌊
q
p

⌋
, nk0+1 = ak0

ak0+2 = 0, bk0+2 = 1

and necessarily ak0+1bk0+2 − bk0+1ak0+2 = 1.
(2) Each new line can be obtained as the rest from division from the former two lines

(except ak0+1 and bk0+2). In particular for any k = 1, . . . , k0 + 1 we have

ak+1 = ak−1 − nkak, bk+1 = bk−1 − nkbk,

nk =
⌊
ak−1
ak

⌋
for k < k0 and nk =

⌊
bk−1
bk

⌋
for k ≤ k0.

(3) The positive integers ak and bk are coprime and the sign of akbk+1 − bkak+1
alternates. In particular, for k = 0, . . . , k0 we get bk > ak ≥ 1 and

akbk+1 − bkak+1 = (−1)k0−k+1.

2.6 Remarks on EEA

Let q = mp + r , where r < p < q and q, p are coprime. Consider EEA beginning
with

p q
a b n
a′ b′ n′
a′′ b′′ n′′
. . . . . . . . .

(3)
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and denote

sign(p, q) := bp − aq.

Note that sign(p, q) is equal (−1)k0+1. We will retain this notation throughout the
rest of the paper and prove some technical properties that will be useful.

The table EEA (3) above may be defined by properties listed in Property 2.7. In
such a case it is unique if it satisfies Property 2.8 below.

Property 2.8 We may assume that n in EEA is > 1.

Proof Instead of (3) consider a shorter EEA

p q
a′ b′ n′ + 1
a′′ b′′ n′′
. . . . . . . . .

We have pb′−qa′ = −n ·sign(p, q) = −sign(p, q) and p = a+a′ = n′a′+a′+a′′.
Hence in the table above signs alternate and the table above has all properties listed
in Property 2.7. The rest of the table does not change. ��
Property 2.9 EEA ends with

. . . . . . . . .

ã ãm + 1 ñ
1 m ã
0 1

where ã, ñ are positive integers. Moreover, ã = 1 iff 2r > p.

Proof The last lines were already given in Property 2.7. We need to prove the second
part. To study the last lines recall the classic EEA, Fact 2.5. It easily follows that
ã = �p/r�. Hence ã is equal to one if and only if 2r > p. ��
Property 2.10 If k0 = 1, EEA is of the form

p q
a am + 1 n = r
1 m n′ = a
0 1

(4)

and a = 1 iff q = mp + p − 1.

Proof Taking into account Property 2.9 above one needs to show only that n = r as
well as the equivalence. Indeed, if a′′ = 0, then by the above Property 2.9 we get
ã = a, ãm + 1 = b, ñ = n thus (am + 1)p − aq = 1. Hence 1 = a(mp − q) + p =
−ra + p and it follows that p = ra + 1 on one hand, while p = na + 1 on the other.
Moreover, if a = 1, then p(m + 1) − q = 1. On the other hand, if q = mp + p − 1
the EEA is of the form (4) with a = 1. ��
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Moreover, as a special case of Property 2.9 we get

Property 2.11 q = mp + 1 if and only if EEA is of the form

p q
1 m p
0 1

(5)

Now for two technical properties

Property 2.12 Take j < n′, any positive integer l, p j = l(a − ja′) + a′ and q j =
l(b − jb′) + b′. Then p j , q j are coprime and their EEA is of the form

l(a − ja′) + a′ l(b − jb′) + b′
a − ja′ b − jb′ l

a′ b′ n′ − j
a′′ b′′ n′′
. . . . . . . . .

Indeed, (n(a − ja′) + a′)(b− jb′) − (n(b− jb′) + b′)(a − ja′) = a′(b − jb′) −
b′(a − ja′) = a′b − b′a = sign(p, q).

Property 2.13 Take a positive integer N, assume a′′ �= 0. Then Na′+a′′ and Nb′+b′′
are coprime and their EEA is of the form

Na′ + a′′ Nb′ + b′′
a′ b′ N
a′′ b′′ n′′
. . . . . . . . .

Indeed, (Na′ + a′′)b′′ − (Nb′ − b′′)a′′ = a′′b′ − a′b′′ = −sign(a′, b′).
Now it is easy to see that if a �= 1, then a′ �= 0.

3 Main Steps of Proof

Choose the line i ≤ k0 in the EEA (2) for a0, b0, where 1 < a0 < b0 are coprime.
Denote p = ai , q = bi and assume EEA is of the form (3). We have bp − aq =
(−1)k0−i+1, recall sign(p, q) = bp − aq. We will consider deformations of �(p, q).

Let Q denote the upper and P denote the lower endpoint of the diagram �(p, q)

if sign(p, q) = −1, reversely if sign(p, q) = 1.

3.1 Decreasing p and q

In this paragraph, informally speaking, we will aim at replacing p = na + a′ by
p = n(a − a′) + a′ (and at the same time q = nb + b′ by n(b − b′) + b′). In the next
paragraph 3.2 we will prove that one can do it recursively until a − ka′ = a′′. This
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will allow us to use EEA and reduce the problem to repetition of the procedure for
consecutive levels of the EEA table (2).

Consider a diagram

�k = −sign(p, q)
(
k�(a′, b′) + �(p − ka, q − kb) + k�(a − a′, b − b′)

)

where 0 ≤ k ≤ n. Denote also the points

Pk = P − sign(p, q)k[−(a − a′), b − b′], Qk = Q − sign(p, q)k[a′,−b′],

in the support of �k such that

�k = −sign(p, q)
(
�(Q, Qk) + �(Qk, Pk) + �(Pk, P)

)
.

Note that �0 = �(p, q),

�n = −sign(p, q)
(
(n + 1)�(a′, b′) + n�(a − a′, b − b′)

)

and every �k is a Newton diagram.
Consider points

Pk
i = Pk − sign(p, q) · i[−a, b], i = 1, . . . , n − k

and

Dk
i = Pk

i + sign(p, q)[−a′, b′], i = 1, . . . , n − k.

Procedure 1 Consecutively for k = 0, . . . , n − 1 take diagrams

�k + Pk
i i = 1, . . . , n − k,

�k + Dk
i i = 1, . . . , n − k.

Note that

�k + Pk
i = � + (Pk−1

n−k−1, P
k
i , Dk−1

1 ) = � + (Pk, Pk
i , Qk)

and analogously

�k + Dk
i = � + (Pk−1

n−k−1, D
k
i , D

k−1
1 ) = � + (Pk, Dk

i , Q
k).
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Proposition 3.1 If a �= 1 the choice of deformations in Procedure 1 gives the opening
terms of the sequence of minimal jumps of Newton numbers

1 , . . . , 1
︸ ︷︷ ︸

n(n+1)

Proof will follow after some lemmas below.

Lemma 3.2 For any fixed k we have

(1) For i = 1, . . . , n − k − 1 the deformation �k + Pk
i has the diagram

−sign(p, q)(�(Q, Qk) + �(Qk, Pk
i ) + �(Pk

i , Pk) + �(Pk, P)).

(2) The deformation �k + Pk
n−k has the diagram

−sign(p, q)
(
(k + 1)�(a′, b′) + (n − k)�(a, b) + k�(a − a′, b − b′)

)
.

Proof First note that Pk
1 , . . . , Pk

n−k and Pk are colinear. Moreover, from Euclid’s
Algorithm p − ka = (n − k)a + a′ and q − kb = (n − k)b + b′ with a′b′ �= 0
and k = 0, . . . , n. To prove (1) it suffices to note that as a consequence the slopes
of �(Pk, P),�(Pk, Pk

i ),�(Pk
i , Qk) and �(Qk, Q) exactly in that order constitute

a strictly monotone sequence. Point (2) follows from the above considerations taking
into account the fact that p−na = a′ andq−nb = b′, hence the slopes of�(Pk

n−k, Q
k)

and �(Qk, Q) are equal. ��
Lemma 3.3 For fixed k and i = 1, . . . , n − k we have

ν(�k) − ν(�k + Pk
i ) = i.

Proof Note that from Lemma 3.2 it follows that we add only points that are in the
interior of the triangle with hypotenuse �(p − ka, q − kb). Moreover, they all lie on
or over the line passing through Qk with the slope as of �(a′, b′) and on or over the
line passing through Pk with the slope as in �(a − a′, b − b′). Hence the difference
of Newton numbers of �k and �k + Pk

i is equal to double the area of their difference.
Now the claim easily follows from Tile Argument 2.4 and Pick’s formula, since

double the area of the triangle PkQk Pk
n−k is equal n − k. ��

Lemma 3.4 For any fixed k we have

(1) For i = 2, . . . , n − k the deformation �k + Dk
i has the diagram

−sign(p, q)(�(Q, Qk) + �(Qk, Dk
i ) + �(Dk

i , P
k) + �(Pk, P)).

(2) The above holds for i = 1 provided a �= 1.
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Proof First note that from their definition, the points Dk
1, . . . , D

k
n−k all lie on a trans-

lation of the segment with endpoints Pk
1 , Pk

n−k by the vector [−a′, b′]. Hence to prove
(1) it suffices to note that Q, Qk and Dk

n−k are colinear and the slope of �(Dk
2, P

k) is
bigger then that of �(Pk, P) in the case sign(p, q) = −1 (smaller in the other case).

Note that we have a �= a′ unless a = a′ = 1. Hence if a �= a′, we have equality of
the slopes of �(Dk

1, P
k) and �(Pk, P). Which proves (2). ��

Remark 3.5 If a �= 1, then

�k + (Pk
n−k, D

k
1) = �0 + (Pk

n−k, D
k
1) = �k+1

and �n lies below all points considered above.

Lemma 3.6 For fixed k if a �= 1, then for i = 1, . . . , n − k we have

ν(�k) − ν(�k + Dk
i ) = n − k + i.

Proof Similarly to the opening argument of the proof of Lemma 3.3 we derive from
Lemma 3.4 that ν(�k) − ν(�k + Dk

i ) is equal to double the area of the difference of
the diagrams. Moreover, this difference can be computed when considering only the
segment �(p − ka, q − kb).

Consider double the area of PkQkDk
j with fixed j . We will compute it using Pick’s

formula. Without loss of generality we can assume that bp − aq = −1.
Note that due to Tile Argument 2.4, the only points that may lie in the triangle

PkQkDk
j are the points Pk

i . First, note that any Pk
i with i < j lies in the interior of

the triangle with vertices PkQkDk
j , since it suffices to notice that the segments Pk Pk

j

and Dk
i D

k
j are parallel. Any Pk

i with i ≥ j lies in the interior of the triangle with

vertices PkQkDk
j if and only if the slope of QkDk

j is greater than the slope of Qk Pk
i

(in absolute values) i.e.

(q − kb − jb + b′)(p − ka − ia) > (p − ka − ja + a′)(q − kb − ib), (6)

whereas Pk
i lies on its side if and only if there is an equality of the slopes. Equation (6)

is equivalent to

(i − j)(b(p − ka) − (q − kb)a) + b′(p − ka) − a′(q − kb) − i > 0.

Note that from q = nb + b′ and p = na + a′ it follows that a′q − b′ p = −n. Hence
a′(q − kb) − b′(p − ka) = k − n and (6) is equivalent to

j + n − k

2
> i.

Of course, equality in (6) holds if and only if j+n−k
2 = i . By # denote the number

of elements. Above combined with Pick’s formula gives that double the area of the
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triangle with vertices PkQkDk
j is

B + 2W − 2 = 3 + #

{

i | j + n − k

2
= i ≥ j

}

+ 2( j − 1)

+2#

{

i | j + n − k

2
> i ≥ j

}

− 2.

If j + n − k is even, then the above is equal to

1 + 1 + 2( j − 1) + 2

(
j + n − k

2
− 1 − j + 1

)

= j + n − k.

If j + n − k is odd, then the above is equal to

1 + 0 + 2( j − 1) + 2

(
j + n − k − 1

2
− j + 1

)

= j + n − k.

This gives the assertion. ��
Remark 3.7 In particular, for a �= 1 Lemmas 3.3 and 3.6 imply that the sequence of
minimal jumps for diagram �k begins with

1 , . . . . . . , 1
︸ ︷︷ ︸

2(n−k)

.

Proof of Proposition 3.1 Thanks to Lemmas 3.3 and 3.6 (see Remark 3.7) we only
have to show that

ν(�k) − ν(�k+1) = 2(n − k)

for k = 0, . . . , n− 1. We compute this number as double the area of the polygon with
vertices Pk

n−k, D
k
1, P

k+1
n−k−1, D

k+1
1 . From Tile Argument 2.4 for [a,−b] it follows

that the only integer points on the boundary are the vertices, whereas P j
k for j =

1, . . . , n − k − 1 lie in the interior. Again from Tile Argument for [a′,−b′] these
points are the only integer ones to lie there. Therefore, from Pick’s formula we get

ν(�k) − ν(�k+1) = 4 + 2(n − k − 1) − 2 = 2(n − k).

Therefore consecutive choices in Procedure 1 give consecutively 1 in the sequence of
minimal jumps and

ν(�0) − ν(�n) =
n−1∑

k=0

2(n − k) = n(n + 1).

This ends the proof. ��
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3.2 Reduction of the Line in EEA

We will now recursively substitute p by n(a − a′) + a′ (compare previous Subsec-
tion 3.1) i.e. we will reduce p to a.

Consider diagrams

� j = −sign(p, q)
(
nj �(a′, b′) + � (

a′ + n(a − ja′), b′ + n(b − jb′)
) )

for j = 0, . . . , n′. Let

P(� j ) = Q − sign(p, q)nj[a′,−b′]

be the point such that

� j = −sign(p, q)(�
(
Q, P(� j )

)
+ �

(
P(� j ), P

)
).

Note that �0 = �(p, q),

�1 = −sign(p, q)
(
n �(a′, b′) + � (

a′ + n(a − a′), b′ + n(b − b′)
))

and

�n′ = −sign(p, q)(nn′�(a′, b′) + �(a′ + na′′, b′ + nb′′)).

Every � j is a diagram.
Let p j = a′ + n(a − ja′), q j = b′ + n(b − jb′) and

�k(� j ) = −sign(p, q)
(
(nj + k)�(a′, b′) + �

(
p j − k(a − ja′), q j − k(b − jb′)

)

+ k� (
a − ( j + 1)a′, b − ( j + 1)b′) )

.

Hence

�k(� j ) = −sign(p, q)(�(Q, Qk(� j )) + �(Qk(� j ), Pk(� j )) + �(Pk(� j ), P)),

where

Pk(� j ) = P − sign(p, q) · k[−(a − ( j + 1)a′), b − ( j + 1)b′],
Qk(� j ) = Q − sign(p, q) · (nj + k)[a′,−b′].
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Consider points

Pk
i (� j ) = Pk(� j ) − sign(p, q) · i[−(a − ja′), b − jb′], i = 1, . . . , n − k

and

Dk
i (�

j ) = Pk
i (� j ) + sign(p, q)[−a′, b′], i = 1, . . . , n − k.

Procedure 2 Fix j ∈ {0, . . . , n′ − 1}. Consecutively for k = 0, . . . , n − 1 take
diagrams

�k(� j ) + Pk
i (� j ) i = 1, . . . , n − k,

�k(� j ) + Dk
i (�

j ) i = 1, . . . , n − k.

Note that

�n(� j ) = −sign(p, q)
(
(n( j + 1) + 1)�(a′, b′)

+ n � (
a − ( j + 1)a′, b − ( j + 1)b′) )

.

For illustration of Procedure 2 consult Fig. 1.

Fig. 1 Procedure 2, a step from
�1 to �n(�1). It is simply an
iteration of Procedure 1. The
shaded area is the difference
between the two diagrams
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Remark 3.8 All points Pk
i (� j ) and Dk

i (�
j ) lie on or above the diagram�n(�n′−1) =

−sign(p, q)(
(
nn′ + 1

) �(a′, b′) + n � (
a′′, b′′)).

Below is a generalisation of Proposition 3.1.

Proposition 3.9 If a �= 1 the choice of deformations in Procedure 2 for the diagram
� j gives the opening terms of the sequence of minimal jumps of Newton numbers

1 , . . . , 1
︸ ︷︷ ︸

n(n+1)

provided j < n′ − 2 or j = n′ − 1 and a′′ �= 0.

Proof Apply Proposition 3.1 to � (
p j , q j

)
, where

p j = a′ + n(a − ja′) and q j = b′ + n(b − jb′).

From Property 2.12 the last diagram �n is of the form

−sign(p, q)
(
(n + 1)�(a′, b′) + n�(a − ja′ − a′, b − jb′ − b′)

)
.

Hence nj�(a′, b′) + �n is a diagram. Moreover, it is exactly �n(� j ) and no segment
lies on any axis if j < n′ − 2 or j = n′ − 1 and a′′ �= 0. Therefore, all preceding
�k for k = 0, . . . , n − 1 coupled with nj�(a′, b′) are also diagrams (in fact equal to
�k(� j )). Hence the claim follows from Property 2.2 and Proposition 3.1. ��
Proposition 3.10 Let a �= 1 and a′′ �= 0. For consecutive j = 0, . . . , n′ − 1 consider
points as in Procedure 2. They give the opening terms for �(p, q) of the sequence of
minimal jumps of Newton numbers

1 , . . . , 1
︸ ︷︷ ︸
n(nn′+1)

Proof will follow immediately from

Lemma 3.11 For j = 0, . . . , n′ −1 the diagram �n(� j ) lies below� j+1. Moreover,
if j < n′ − 2 or j = n′ − 1 and a′′ �= 0 we have

ν(� j+1) = ν(�n(� j )) + n.

Proof From Property 2.2 and the form of the diagrams one has to compute double the
area of the triangle with vertices P(� j+1), P(� j+1) − sign(p, q)[a′,−b′] and Q.
From Tile Argument for p j+1 and q j+1 as well as for a′ and b′, the only points that
lie in this triangle lie on its sides and there are exactly n + 2 such points. Hence form
Pick’s formula we get the claim. ��
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Fig. 2 Procedure 2 ends with

the diagram �n′
provided

a′′ �= 0. The shaded area
represents a difference between
the Fig. 1

Proof of Proposition 3.10 The claim follows fromLemma 3.11 above and the fact that
we have n′ steps. Each step gives n2 + n ones in the sequence (see Proposition 3.9),
where n ones are attained twice with the last deformations of � j and initial defor-
mations of � j+1 (see Lemma 3.11 above) with the exception of the (n′ − 1)th step.
Since a′′ �= 0, none of the points lie on an axis. ��

Compare Fig. 2 with the steps of proof.
Suppose a′′ �= 0. Consider the diagram

� = −sign(p, q)
(� (

(nn′ + 1)a′ + a′′, (nn′ + 1)b′ + b′′) + (n − 1)�(a′′, b′′)
)
.

Note that n − 1 > 0 from Property 2.8. Moreover, from Property 2.13 we get that
EEA is the same as EEA of a, b up to the first line.

Lemma 3.12 If a′′ �= 0, then � lies above �n(�n′−1) and

ν(�) − ν(�n(�n′−1)) = nn′ + 1

Proof Note that (nn′ + 1)a′ + a′′ and (nn′ + 1)b′ + b′′ are coprime and their EEA
series is given in Property 2.13. Hence using Tile Argument and Pick’s formula we
easily get the claim. ��

3.3 Short EEA

In this section we consider two cases left i.e. what happens if a′′ = 0 or a′ = 0. Note
that a = 1 implies a′′ = 0 or a′ = 0 i.e. EEA is of the form (4) or (5).

Let us remind that q = mp + r , where 0 < r < p. From Property 2.10 we have
r = n for short EEA. Under notation of Procedure 1 consider
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Procedure 3 Let a′′ = 0 and a �= 1. For j ∈ {0, . . . , n′ − 2} consecutively for
k = 0, . . . , n − 1 take diagrams

�k(� j ) + Pk
i (� j ) i = 1, . . . , n − k,

�k(� j ) + Dk
i (�

j ) i = 1, . . . , n − k.

Note that the last diagram in the procedure above is �n(�n′−2) of the form

n�(1,m + 1) + (n(n′ − 1) + 1)�(1,m). (7)

Procedure 4 Let a′ �= 0 and a = 1. Consecutively take diagrams

(P, Q) + Qi i = 1, . . . , p − 1,

where Qi = Q − i[−1,m + 1].
Note that a′ = 0 iff q = mp + 1.

Procedure 5 Let a′ = 0. Take diagrams

(P, Q) + Pi i = 1, . . . , p − 1,

where Pi = P + i[−1,m].
Figure 3 shows the outcome of Procedures 3, 4 and 5.

Fig. 3 Procedures 4, 3 and 5 all
end with this diagram, where
q = mp + r
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Proposition 3.13 If a′′ = 0 or a′ = 0, the opening terms of the sequence of minimal
jumps of Newton numbers are

1 , . . . , 1
︸ ︷︷ ︸

r(p−r)

Proof We have three cases.
If q = kp + 1 i.e. a′ = 0 consider the choice of deformations in Procedure 5

and the claim follows immediately from Lemma 3.3 and Property 2.11. Note that the
number of jumps above is also equal to r(p− r), because here r = 1 and the diagram
(P, Q) + Pp−1 is of the form (7).

If a′ �= 0 and a = 1, then a′ = 1, a′′ = 0. Consider the choice of deformations in
Procedure 4 and the claim follows immediately fromLemma 3.3. Note that the number
of jumps above is also equal to r(p − r), because here r = p − 1, see Property 2.10.
Again, the diagram (P, Q) + Qp−1 is of the form (7).

If a′′ = 0 and a �= 1 consider deformations in Procedure 3, the proof is the same
as in Proposition 3.10 and follows from Lemma 3.11. The length of the sequence
of jumps is hence equal to (n′ − 1)n2 + n = n(na − n + 1) = r(p − r) thanks to
Properties 2.10 and 2.9.

Hence the claim. ��
Remark 3.14 Note that if a′′ = 0 or a′ = 0, the last diagram is of the form (7).

4 Main Theorem Combinatorially

Theorem 4.1 Given a diagram �(a0, b0), where a0, b0 are coprime, the sequence of
minimal jumps of Newton numbers commences with

1 , . . . , 1
︸ ︷︷ ︸

r(a0−r)

where r is the rest out of division of b0 by a0.

Proof Suppose EEA is of the form (2). Consider an auxiliary sequence

z0 = 1, z1 = n1, zk = zk−2 + zk−1nk .

This sequence coincides with the column P in reverse order in EEA, see Fact 2.5. Note
that by Property 2.8 we may assume that z1 > 1 and hence (zk) is strictly increasing.

Procedure 6 Take k = 1.
Put L = zk−1 − 1,

p = zkak + ak+1 q = zkbk + bk+1

a = ak b = bk n = zk
a′ = ak+1 b′ = bk+1 n′ = nk+1
a′′ = ak+2 b′′ = bk+2
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Fig. 4 Using Procedure 2 for an
embedded diagram. Note that
n − 1 is always nonzero and here
�n(� j−1) = Diag j (a, b) =
(nj + 1)�(a′, b′) + n�(a −
ja′, b − jb′) and the shaded
area is the difference between
subsequent diagrams

and consider deformations of the diagrams

�k = −sign(p, q)
(
L�(a′, b′) + �(p, q)

)
.

For �(p, q):
If a′ = 0, use Procedure 5.
If a′′ = 0, a′ = 1 and a = 1 use Procedure 4.
If a′′ = 0, a′ = 1 and a �= 1 use Procedure 3.
Otherwise, use Procedure 2, afterwards substitute k by k+1 and proceed as above.

This procedure will end, because the EEA sequence is finite. The last step is k0th
step.

We have �0 = �(a0, b0), all diagrams �k lie below �(a0, b0) and have constant
endpoints for k0 > k > 0. We will argue that the procedure above gives asserted
jumps.

For ν(�0) the initial jumps are one due to Propositions 3.10 and 3.13.
For k > 0we need only to show that all intermediate polygonal chains are diagrams,

compare Fig. 4.
Indeed, if a′′ �= 0 recall that due to Remark 3.8 all points considered for �(p, q)

lie above �n(�n′−1) = −sign(p, q)(
(
nn′ + 1

) �(a′, b′) + n � (
a′′, b′′)). Assume

sign(p, q) = −1. Note that L�(a′, b′) + �n(�n′−1) is a diagram with the same
endpoints as �k . Hence all intermediate diagrams combined with L�(a′, b′) as the
initial segment are diagrams. Recall Property 2.2. By Lemma 3.12 we get that ν(�k)

has been already attained in the sequence. Hence from Proposition 3.10 the jumps are
at most one. The same argument applies when sign(p, q) = 1.

Moreover, if a′′ = 0 or a′ = 0 the same argument gives that from Proposition 3.13
follows that the jumps are at most one.

Now we only have to compute the total number of jumps. The last diagram due to
Remark 3.14 is M�(1,m + 1) + N�(1,m) for some positive integers M, N . Hence
we have obtained all numbers ranging from ν(�(a0, b0)) up to ν(M�(1,m + 1) +
N�(1,m)), the difference is double the area and is equal to r(a0 − r). Indeed, we
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have a0 = M + N and b0 = M(m + 1) + Nm = m(M + N ) + M . Hence M = r
and N = a0 − r . Thus double the area of the difference is a0b0 − Mb0 − a0mN =
N (b0 − a0m) = r(a0 − r). This gives the claim of Theorem 4.1. ��

Note that the above can also be computed explicitly using EEA and inductive
definition of zk .

Remark 4.2 Theorem 4.1 is at its weakest for q ≡ ±1(mod p), when the function
r(p − r) on r minimises and is equal p − 1.

Example 4.3 We continue Example 2.6. For the diagram�(40, 73) from Theorem 4.1
we get that the sequence of jumps of Newton numbers begins with 33·(40−33) = 231
ones.

5 Remarks

We will indicate one possible use of the algorithm described in this paper in finding
all Milnor numbers attained by deformations. Note that this combinatorial approach
gives also the form of deformations that have the supposed Milnor number.

Let us look at a continuation of Example 2.6.

Example 5.1 Take an irreducible singularity f of the form (1) with p = 40 and
q = 73. We claim that all positive integers less than μ( f ) are attained as Milnor
numbers of deformations of f i.e. the sequence of jumps is constantly equal 1.

Indeed, as was already indicated in Example 4.3, we have at least 231 initial ones
in the sequence of jumps of Milnor numbers. Take nondegenerate deformations Fk,l
of f such that

�(Fk,l) = �( f ) + ((0, k), (l, 0)).

Note that the diagram �(Fk,l) consists of a single segment. Consider for instance
F37,73. We have 37 and 73 are coprime, moreover μ(F37,73) > μ( f ) − 231 >

μ(F37,73) − 36 · (37 − 36). Using Theorem 1.1, we get that the sequence of jumps
equal to 1 is at least as long as 252. This improves the previous result.

In the same manner consider deformations Fk,l with (k, l) consecutively equal to

(39, 73), (38, 73), (37, 73),
(37, 73), (37, 71), . . . , (37, 41)

and apply Theorem 1.1 to each. Now one can continue with deformations with (k, l)
equal to

(37, 41), (36, 41), . . . , (23, 41),
(23, 41), (23, 40), . . . , (23, 29),
(23, 29), (22, 29), . . . etc

or use the main result of Brzostowski et al. (2018) for k = 40. Precisely, the result we
are referring to states that for a homogeneous nondegenerate isolated singularity fk of
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degree k all positive integers less than μ( fk) − k + 2 are attained as Milnor numbers
of deformations. Note that μ( f40) − 40 + 2 > μ(F37,41) − 4 · (37 − 4).

Both approaches give the assertion of Example 5.1.

Do note that the computation by hand presented above (which is also easy to imple-
ment as a program) is essentially better than straightforward numerical computation.
Our numerical experiments with naive algorithms have lasted for hours in the case of
the singularity from Example 5.1, whereas doing it by hand using Theorem 1.1 is a
matter of minutes.

Easy generalisation of the above Example 5.1 is

Corollary 5.2 Take an isolated singularity f of the form (1) with p < q coprime.
Suppose there exists an injective sequence of coprime numbers (ps, qs)s=1,...,v such
that ps ≤ qs, both sequences (ps), (qs) are non-increasing and

(ps − 1)(qs − 1) − rs(ps − rs) ≤ (ps+1 − 1)(qs+1 − 1), (8)

where we denote by rs the positive integer such that qs ≡ rs(mod ps).
Then all positive integers between μ( f ) and (pv − 1)(qv − 1) − rv(pv − rv) are

attained as Milnor numbers of deformations of f .
Moreover, if

(pv − 1)(qv − 1) − rv(pv − rv) < (p − 1)(p − 2) + 1, (9)

then all positive integers are attained as Milnor numbers of deformations of f .

Proof As in Example 5.1 consider nondegenerate deformations Fk,l of f such that

�(Fk,l) = �( f ) + ((0, k), (l, 0)).

Since ps, qs are coprime, for each deformation Fps ,qs use Theorem 1.1. A deformation
of a deformation is a deformation (can be chosen as a one-parameter deformation as
well as from nondegeneracy of deformations one can assume it is nondegenerate) due
to the form of the diagrams. Hence we get deformations of f giving Milnor numbers
from (ps −1)(qs −1) to (ps −1)(qs −1)−rs(ps −rs). The inequality (8) guarantees
that the Milnor number of Fps+1,qs+1 is greater than μ(Fps ,qs ) − rs(ps − rs). Hence
all integers between μ( f ) and (pv − 1)(qv − 1) − rv(pv − rv) are attained as Milnor
numbers of deformations of f .

Moreover, if inequality (9) holds, it means that the Milnor number of the deforma-
tion Fp,p of f is bigger by at least p−2 than the last Milnor number already attained.
Hencewe can use the result that for a homogeneous nondegenerate isolated singularity
of degree p all positive integers less or equal μ(Fp,p) − p + 2 are attained as Milnor
numbers of deformations from Brzostowski et al. (2018). This ends the proof. ��

The procedure above may be stated constructively but we cannot at the moment
guarantee that we can choose sequences which satisfy inequality (9). To the con-
trary, for p, q relatively small, for instance (5, 7), such a sequence may not exist
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(compare Walewska 2013). The question on when such a sequence exists could be
possibly resolved using distribution of primes (compare the explicit sequence from
Example 5.1).

This paper answers in particular to open questions posed in the article (Bodin 2007)
which stress for constructive methods. Our combinatorial approach in the spirit of pre-
vious sections is very powerful in answering these questions. The authors have results
also for all bivariate semi-quasi-homogeneous singularities, in particular extending
results of this paper on irreducible germs, but we defer the details to a subsequent
publication, compare Michalska and Walewska 2016b.
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