310 research outputs found

    Inhibition of EZH2 Promotes Human Embryonic Stem Cell Differentiation into Mesoderm by Reducing H3K27me3.

    Get PDF
    Mesoderm derived from human embryonic stem cells (hESCs) is a major source of the mesenchymal stem/stromal cells (MSCs) that can differentiate into osteoblasts and chondrocytes for tissue regeneration. While significant progress has been made in understanding of molecular mechanisms of hESC differentiation into mesodermal cells, little is known about epigenetic factors controlling hESC fate toward mesoderm and MSCs. Identifying potential epigenetic factors that control hESC differentiation will undoubtedly lead to advancements in regenerative medicine. Here, we conducted an epigenome-wide analysis of hESCs and MSCs and uncovered that EZH2 was enriched in hESCs and was downregulated significantly in MSCs. The specific EZH2 inhibitor GSK126 directed hESC differentiation toward mesoderm and generated more MSCs by reducing H3K27me3. Our results provide insights into epigenetic landscapes of hESCs and MSCs and suggest that inhibiting EZH2 promotes mesodermal differentiation of hESCs

    Cardiovascular Damage in Alzheimer Disease: Autopsy Findings From the Bryan ADRC

    Get PDF
    Autopsy information on cardiovascular damage was investigated for pathologically confirmed Alzheimer disease (AD) patients (n = 84) and non-AD control patients (n = 60). The 51 relevant items were entered into a grade-of-membership model to describe vascular damage in AD. Five latent groups were identified “I: early-onset AD,” “II: controls, cancer,” “III: controls, extensive atherosclerosis,” “IV: late-onset AD, male,” and “V: late-onset AD, female.” Expectedly, Groups IV and V had elevated APOE ϵ4 frequency. Unexpectedly, there was limited atherosclerosis and frequent myocardial valve and ventricular damage. The findings do not indicate a strong relationship between atherosclerosis and AD, although both are associated with the APOE ϵ4. Instead, autopsy findings of extensive atherosclerosis were associated with possible, not probable or definite AD, and premature death. They are consistent with the hypothesis that brain hypoperfusion contributes to dementia, possibly to AD pathogenesis, and raise the possibility that the APOE allele ϵ4 contributes directly to heart valve and myocardial damage

    Phase variable expression of capsular polysaccharide modifications allows <em>Campylobacter jejuni</em> to avoid bacteriophage infection in chickens

    Get PDF
    Bacteriophages are estimated to be the most abundant entities on earth and can be found in every niche where their bacterial hosts reside. The initial interaction between phages and Campylobacter jejuni, a common colonizer of poultry intestines and a major source of foodborne bacterial gastroenteritis in humans, is not well understood. Recently, we isolated and characterized a phage F336 resistant variant of C. jejuni NCTC11168 called 11168R. Comparisons of 11168R with the wildtype lead to the identification of a novel phage receptor, the phase variable O-methyl phosphoramidate (MeOPN) moiety of the C. jejuni capsular polysaccharide (CPS). In this study we demonstrate that the 11168R strain has gained cross-resistance to four other phages in our collection (F198, F287, F303, and F326). The reduced plaquing efficiencies suggested that MeOPN is recognized as a receptor by several phages infecting C. jejuni. To further explore the role of CPS modifications in C. jejuni phage recognition and infectivity, we tested the ability of F198, F287, F303, F326, and F336 to infect different CPS variants of NCTC11168, including defined CPS mutants. These strains were characterized by high-resolution magic angle spinning NMR spectroscopy. We found that in addition to MeOPN, the phase variable 3-O-Me and 6-O-Me groups of the NCTC11168 CPS structure may influence the plaquing efficiencies of the phages. Furthermore, co-infection of chickens with both C. jejuni NCTC11168 and phage F336 resulted in selection of resistant C. jejuni bacteria, which either lack MeOPN or gain 6-O-Me groups on their surface, demonstrating that resistance can be acquired in vivo. In summary, we have shown that phase variable CPS structures modulate phage infectivity in C. jejuni and suggest that the constant phage predation in the avian gut selects for changes in these structures leading to a continuing phage–host co-evolution

    A suggested classification for two groups of Campylobacter myoviruses

    Get PDF
    Most Campylobacter bacteriophages isolated to date have long contractile tails and belong to the family Myoviridae. Based on their morphology, genome size and endonuclease restriction profile, Campylobacter phages were originally divided into three groups. The recent genome sequencing of seven virulent campylophages reveal further details of the relationships between these phages at the genome organization level. This article details the morphological and genomic features among the campylophages, investigates their taxonomic position, and proposes the creation of two new genera, the “Cp220likevirus” and “Cp8unalikevirus” within a proposed subfamily, the “Eucampyvirinae”.AMK would like to thank Andre Villegas for developing "extractUpStreamDNA". The authors are thankful to Denis Arutyunov and Jessica Sacher for helpful discussions and help with phage preparations, and to Cheryl Nargang for her help with nucleotide sequencing and analysis of gp047 homolog from phage F336. The bacteriophage receptor-binding protein studies were funded by an Alberta Innovates Scholar Award (CMS) and a Natural Sciences and Engineering Research Council of Canada Strategic Grant (CMS). RL and AMK are chair and vice chair, respectively, of the prokaryotic virus subcommittee of the ICTV (International Committee for Taxonomy of Viruses)

    Glycoengineered outer membrane vesicles: A novel platform for bacterial vaccines

    Get PDF
    The World Health Organization has indicated that we are entering into a post-antibiotic era in which infections that were routinely and successfully treated with antibiotics can now be lethal due to the global dissemination of multidrug resistant strains. Conjugate vaccines are an effective way to create a long-lasting immune response against bacteria. However, these vaccines present many drawbacks such as slow development, high price, and batch-to-batch inconsistencies. Alternate approaches for vaccine development are urgently needed. Here we present a new vaccine consisting of glycoengineered outer membrane vesicles (geOMVs). This platform exploits the fact that the initial steps in the biosynthesis of most bacterial glycans are similar. Therefore, it is possible to easily engineer non-pathogenic Escherichia coli lab strains to produce geOMVs displaying the glycan of the pathogen of interest. In this work we demonstrate the versatility of this platform by showing the efficacy of geOMVs as vaccines against Streptococcus pneumoniae in mice, and against Campylobacter jejuni in chicken. This cost-effective platform could be employed to generate vaccines to prevent infections caused by a wide variety of microbial agents in human and animals

    Glycosylation Is Vital for Industrial Performance of Hyperactive Cellulases

    Get PDF
    In the terrestrial biosphere, biomass deconstruction is conducted by microbes employing a variety of complementary strategies, many of which remain to be discovered. Moreover, the biofuels industry seeks more efficient (and less costly) cellulase formulations upon which to launch the nascent sustainable bioenergy economy. The glycan decoration of fungal cellulases has been shown to protect these enzymes from protease action and to enhance binding to cellulose. We show here that thermal tolerant bacterial cellulases are glycosylated as well, although the types and extents of decoration differ from their Eukaryotic counterparts. Our major findings are that glycosylation of CelA is uniform across its three linker peptides and composed of mainly galactose disaccharides (which is unique) and that this glycosylation dramatically impacts the hydrolysis of insoluble substrates, proteolytic and thermal stability, and substrate binding and changes the dynamics of the enzyme. This study suggests that the glycosylation of CelA is crucial for its exceptionally high cellulolytic activity on biomass and provides the robustness needed for this enzyme to function in harsh environments including industrial settings

    Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA.

    Get PDF
    We examined two variants of the genome-sequenced strain, Campylobacter jejuni NCTC11168, which show marked differences in their virulence properties including colonization of poultry, invasion of Caco-2 cells, and motility. Transcript profiles obtained from whole genome DNA microarrays and proteome analyses demonstrated that these differences are reflected in late flagellar structural components and in virulence factors including those involved in flagellar glycosylation and cytolethal distending toxin production. We identified putative sigma(28) and sigma(54) promoters for many of the affected genes and found that greater differences in expression were observed for sigma(28)-controlled genes. Inactivation of the gene encoding sigma(28), fliA, resulted in an unexpected increase in transcripts with sigma(54) promoters, as well as decreased transcription of sigma(28)-regulated genes. This was unlike the transcription profile observed for the attenuated C. jejuni variant, suggesting that the reduced virulence of this organism was not entirely due to impaired function of sigma(28). However, inactivation of flhA, an important component of the flagellar export apparatus, resulted in expression patterns similar to that of the attenuated variant. These findings indicate that the flagellar regulatory system plays an important role in campylobacter pathogenesis and that flhA is a key element involved in the coordinate regulation of late flagellar genes and of virulence factors in C. jejuni

    Glycosylation Is Vital for Industrial Performance of Hyperactive Cellulases

    Get PDF
    In the terrestrial biosphere, biomass deconstruction is conducted by microbes employing a variety of complementary strategies, many of which remain to be discovered. Moreover, the biofuels industry seeks more efficient (and less costly) cellulase formulations upon which to launch the nascent sustainable bioenergy economy. The glycan decoration of fungal cellulases has been shown to protect these enzymes from protease action and to enhance binding to cellulose. We show here that thermal tolerant bacterial cellulases are glycosylated as well, although the types and extents of decoration differ from their Eukaryotic counterparts. Our major findings are that glycosylation of CelA is uniform across its three linker peptides and composed of mainly galactose disaccharides (which is unique) and that this glycosylation dramatically impacts the hydrolysis of insoluble substrates, proteolytic and thermal stability, and substrate binding and changes the dynamics of the enzyme. This study suggests that the glycosylation of CelA is crucial for its exceptionally high cellulolytic activity on biomass and provides the robustness needed for this enzyme to function in harsh environments including industrial settings

    Orally Administered P22 Phage Tailspike Protein Reduces Salmonella Colonization in Chickens: Prospects of a Novel Therapy against Bacterial Infections

    Get PDF
    One of the major causes of morbidity and mortality in man and economically important animals is bacterial infections of the gastrointestinal (GI) tract. The emergence of difficult-to-treat infections, primarily caused by antibiotic resistant bacteria, demands for alternatives to antibiotic therapy. Currently, one of the emerging therapeutic alternatives is the use of lytic bacteriophages. In an effort to exploit the target specificity and therapeutic potential of bacteriophages, we examined the utility of bacteriophage tailspike proteins (Tsps). Among the best-characterized Tsps is that from the Podoviridae P22 bacteriophage, which recognizes the lipopolysaccharides of Salmonella enterica serovar Typhimurium. In this study, we utilized a truncated, functionally equivalent version of the P22 tailspike protein, P22sTsp, as a prototype to demonstrate the therapeutic potential of Tsps in the GI tract of chickens. Bacterial agglutination assays showed that P22sTsp was capable of agglutinating S. Typhimurium at levels similar to antibodies and incubating the Tsp with chicken GI fluids showed no proteolytic activity against the Tsp. Testing P22sTsp against the three major GI proteases showed that P22sTsp was resistant to trypsin and partially to chymotrypsin, but sensitive to pepsin. However, in formulated form for oral administration, P22sTsp was resistant to all three proteases. When administered orally to chickens, P22sTsp significantly reduced Salmonella colonization in the gut and its further penetration into internal organs. In in vitro assays, P22sTsp effectively retarded Salmonella motility, a factor implicated in bacterial colonization and invasion, suggesting that the in vivo decolonization ability of P22sTsp may, at least in part, be due to its ability to interfere with motility… Our findings show promise in terms of opening novel Tsp-based oral therapeutic approaches against bacterial infections in production animals and potentially in humans
    corecore