1,301 research outputs found

    Epigenetics, Behaviour, and Health

    Get PDF
    <p/> <p>The long-term effects of behaviour and environmental exposures, particularly during childhood, on health outcomes are well documented. Particularly thought provoking is the notion that exposures to different social environments have a long-lasting impact on human physical health. However, the mechanisms mediating the effects of the environment are still unclear. In the last decade, the main focus of attention was the genome, and interindividual genetic polymorphisms were sought after as the principal basis for susceptibility to disease. However, it is becoming clear that recent dramatic increases in the incidence of certain human pathologies, such as asthma and type 2 diabetes, cannot be explained just on the basis of a genetic drift. It is therefore extremely important to unravel the molecular links between the "environmental" exposure, which is believed to be behind this emerging incidence in certain human pathologies, and the disease's molecular mechanisms. Although it is clear that most human pathologies involve long-term changes in gene function, these might be caused by mechanisms other than changes in the deoxyribonucleic acid (DNA) sequence. The genome is programmed by the epigenome, which is composed of chromatin and a covalent modification of DNA by methylation. It is postulated here that "epigenetic" mechanisms mediate the effects of behavioural and environmental exposures early in life, as well as lifelong environmental exposures and the susceptibility to disease later in life. In contrast to genetic sequence differences, epigenetic aberrations are potentially reversible, raising the hope for interventions that will be able to reverse deleterious epigenetic programming.</p

    Impact of early environment on children's mental health : lessons from DNA methylation studies with monozygotic twins

    Full text link
    Over the past decade, epigenetic analyses have made important contributions to our understanding of healthy development and a wide variety of adverse conditions such as cancer and psychopathology. There is increasing evidence that DNA methylation is a mechanism by which environmental factors influence gene transcription and, ultimately, phenotype. However, differentiating the effects of the environment from those of genetics on DNA methylation profiles remains a significant challenge. Monozygotic (MZ) twin study designs are unique in their ability to control for genetic differences because each pair of MZ twins shares essentially the same genetic sequence with the exception of a small number of de novo mutations and copy number variations. Thus, differences within twin pairs in gene expression and phenotype, including behavior, can be attributed in the majority of cases to environmental effects rather than genetic influence. In this article, we review the literature showing how MZ twin designs can be used to study basic epigenetic principles, contributing to understanding the role of early in utero and postnatal environmental factors on the development of psychopathology. We also highlight the importance of initiating longitudinal and experimental studies with MZ twins during pregnancy. This approach is especially important to identify: (1) critical time periods during which the early environment can impact brain and mental health development, and (2) the specific mechanisms through which early environmental effects may be mediated. These studies may inform the optimum timing and design for early preventive interventions aimed at reducing risk for psychopathology

    Genome-wide DNA methylation changes in a mouse model of infection-mediated neurodevelopmental disorders

    Get PDF
    Background Prenatal exposure to infectious or inflammatory insults increases the risk of neurodevelopmental disorders. Using a well-established mouse model of prenatal viral-like immune activation, we examined whether this pathological association involves genome-wide DNA methylation differences at single nucleotide resolution. Methods Prenatal immune activation was induced by maternal treatment with the viral mimetic polyriboinosinic-polyribocytidylic acid in middle or late gestation. Following behavioral and cognitive characterization of the adult offspring (n = 12 per group), unbiased capture array bisulfite sequencing was combined with subsequent matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and quantitative real-time polymerase chain reaction analyses to quantify DNA methylation changes and transcriptional abnormalities in the medial prefrontal cortex of immune-challenged and control offspring. Gene ontology term enrichment analysis was used to explore shared functional pathways of genes with differential DNA methylation. Results Adult offspring of immune-challenged mothers displayed hyper- and hypomethylated CpGs at numerous loci and at distinct genomic regions, including genes relevant for gamma-aminobutyric acidergic differentiation and signaling (e.g., Dlx1, Lhx5, Lhx8), Wnt signaling (Wnt3, Wnt8a, Wnt7b), and neural development (e.g., Efnb3, Mid1, Nlgn1, Nrxn2). Altered DNA methylation was associated with transcriptional changes of the corresponding genes. The epigenetic and transcriptional effects were dependent on the offspring\u2019s age and were markedly influenced by the precise timing of prenatal immune activation. Conclusions Prenatal viral-like immune activation is capable of inducing stable DNA methylation changes in the medial prefrontal cortex. These long-term epigenetic modifications are a plausible mechanism underlying the disruption of prefrontal gene transcription and behavioral functions in subjects with prenatal infectious histories

    Childhood abuse is associated with methylation of multiple loci in adult DNA

    Get PDF
    Childhood abuse is associated with increased adult disease risk, suggesting that processes acting over the long-term, such as epigenetic regulation of gene activity, may be involved. DNA methylation is a critical mechanism in epigenetic regulation. We aimed to establish whether childhood abuse was associated with adult DNA methylation profiles

    Promoter-Wide Hypermethylation of the Ribosomal RNA Gene Promoter in the Suicide Brain

    Get PDF
    BACKGROUND: Alterations in gene expression in the suicide brain have been reported and for several genes DNA methylation as an epigenetic regulator is thought to play a role. rRNA genes, that encode ribosomal RNA, are the backbone of the protein synthesis machinery and levels of rRNA gene promoter methylation determine rRNA transcription. METHODOLOGY/PRINCIPAL FINDINGS: We test here by sodium bisulfite mapping of the rRNA promoter and quantitative real-time PCR of rRNA expression the hypothesis that epigenetic differences in critical loci in the brain are involved in the pathophysiology of suicide. Suicide subjects in this study were selected for a history of early childhood neglect/abuse, which is associated with decreased hippocampal volume and cognitive impairments. rRNA was significantly hypermethylated throughout the promoter and 5' regulatory region in the brain of suicide subjects, consistent with reduced rRNA expression in the hippocampus. This difference in rRNA methylation was not evident in the cerebellum and occurred in the absence of genome-wide changes in methylation, as assessed by nearest neighbor. CONCLUSIONS/SIGNIFICANCE: This is the first study to show aberrant regulation of the protein synthesis machinery in the suicide brain. The data implicate the epigenetic modulation of rRNA in the pathophysiology of suicide

    Peripheral SLC6A4 DNA Methylation Is Associated with In Vivo Measures of Human Brain Serotonin Synthesis and Childhood Physical Aggression

    Get PDF
    The main challenge in addressing the role of DNA methylation in human behaviour is the fact that the brain is inaccessible to epigenetic analysis in living humans. Using positron emission tomography (PET) measures of brain serotonin (5-HT) synthesis, we found in a longitudinal sample that adult males with high childhood-limited aggression (C-LHPA) had lower in vivo 5-HT synthesis in the orbitofrontal cortex (OBFC). Here we hypothesized that 5-HT alterations associated with childhood aggression were linked to differential DNA methylation of critical genes in the 5-HT pathway and these changes were also detectable in peripheral white blood cells. Using pyrosequencing, we determined the state of DNA methylation of SLC6A4 promoter in T cells and monocytes isolated from blood of cohort members (N = 25) who underwent a PET scan, and we examined whether methylation status in the blood is associated with in vivo brain 5-HT synthesis. Higher levels of methylation were observed in both T cells and monocytes at specific CpG sites in the C-LHPA group. DNA methylation of SLC6A4 in monocytes appears to be associated more reliably with group membership than T cells. In both cell types the methylation state of these CpGs was associated with lower in vivo measures of brain 5-HT synthesis in the left and right lateral OBFC (N = 20) where lower 5-HT synthesis in C-LHPA group was observed. Furthermore, in vitro methylation of the SLC6A4 promoter in a luciferase reporter construct suppresses its transcriptional activity supporting a functional role of DNA methylation in SLC6A4 promoter regulation. These findings indicate that state of SLC6A4 promoter methylation is altered in peripheral white blood cells of individuals with physical aggression during childhood. This supports the relevance of peripheral DNA methylation for brain function and suggests that peripheral SLC6A4 DNA methylation could be a marker of central 5-HT function

    DNA methylation, the early-life social environment and behavioral disorders

    Get PDF
    One of the outstanding questions in behavioral disorders is untangling the complex relationship between nurture and nature. Although epidemiological data provide evidence that there is an interaction between genetics (nature) and the social and physical environments (nurture) in a spectrum of behavioral disorders, the main open question remains the mechanism. Emerging data support the hypothesis that DNA methylation, a covalent modification of the DNA molecule that is a component of its chemical structure, serves as an interface between the dynamic environment and the fixed genome. We propose that modulation of DNA methylation in response to environmental cues early in life serves as a mechanism of life-long genome adaptation. Under certain contexts, this adaptation can turn maladaptive resulting in behavioral disorders. This hypothesis has important implications on understanding, predicting, preventing, and treating behavioral disorders including autism that will be discussed

    A method for purification, identification and validation of DNMT1 mRNA binding proteins

    Get PDF
    DNA methyltransferase 1 (DNMT1) is the enzyme responsible for the maintenance of DNA methylation patterns during cell division. DNMT1 expression is tightly regulated within the cell cycle. Our previous study showed that the binding of a protein with an apparent size of ~40 kDa on DNMT1 3’-UTR triggered the destabilization of DNMT1 mRNA transcript during Go/G1 phase. Using RNA affinity capture with the 3’-UTR of DNMT1 mRNA and matrix-assisted laser desorption-time of flight tandem mass spectrometry (MALDI-TOF-MS-MS) analysis, we isolated and identified AUF 1 (AU-rich element ARE:poly-(U)-binding/degradation factor) as the binding protein. We then validated the role of this protein in the destabilization of DNMT1 mRNA. In this report, we detail the different approaches used for the isolation, the identification of a RNA binding protein and the validation of its role
    • …
    corecore