35 research outputs found

    Impact Shocking of a Zircon-Sanidine Mixture and Investigations of Pb Mobility

    Get PDF
    The purpose of this project is to explore the mobility, mixing, and possible clumping of Pb isotopes during laboratory impact shock experiments. Impact events are a common planetary occurrence and their effect on istotope systematics and subsequent geochronology is not fully understood. By artificially shocking mixtures of zircon and sanidine and investigating the sample products, it may be possible to understand if and how Pb is mobilized during impact shock. Isotopes of Pb are the final daughter products of the decay chains of 238U, 235U and 232Th and therefore understanding how mobile the daughter product is during impact events could have consequences for dating impact events. These investigations will also reveal if Pb isotopes can be mixed between mineral

    Impact Shocking of a Zircon-Sanidine Mixture and Investigations of Pb Mobility

    Get PDF
    The purpose of this project is to explore the mobility, mixing, and possible clumping of Pb isotopes during laboratory impact shock experiments. Impact events are a common planetary occurrence and their effect on istotope systematics and subsequent geochronology is not fully understood. By artificially shocking mixtures of zircon and sanidine and investigating the sample products, it may be possible to understand if and how Pb is mobilized during impact shock. Isotopes of Pb are the final daughter products of the decay chains of 238U, 235U and 232Th and therefore understanding how mobile the daughter product is during impact events could have consequences for dating impact events. These investigations will also reveal if Pb isotopes can be mixed between minerals

    The HPS electromagnetic calorimeter

    Get PDF
    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called “heavy photon.” Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015–2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier

    A Direct Measurement of Hard Two-Photon Exchange with Electrons and Positrons at CLAS12

    Full text link
    One of the most surprising discoveries made at Jefferson Lab has been the discrepancy in the determinations of the proton's form factor ratio μpGEp/GMp\mu_p G_E^p/G_M^p between unpolarized cross section measurements and the polarization transfer technique. Over two decades later, the discrepancy not only persists but has been confirmed at higher momentum transfers now accessible in the 12-GeV era. The leading hypothesis for the cause of this discrepancy, a non-negligible contribution from hard two-photon exchange, has neither been conclusively proven or disproven. This state of uncertainty not only clouds our knowledge of one-dimensional nucleon structure but also poses a major concern for our field's efforts to map out the three-dimensional nuclear structure. A better understanding of multi-photon exchange over a wide phase space is needed. We propose making comprehensive measurements of two-photon exchange over a wide range in momentum transfer and scattering angle using the CLAS12 detector. Specifically, we will measure the ratio of positron-proton to electron-proton elastic scattering cross sections, using the proposed positron beam upgrade for CEBAF. The experiment will use 2.2, 4.4, and 6.6 GeV lepton beams incident on the standard CLAS12 unpolarized hydrogen target. Data will be collected by the CLAS12 detector in its standard configuration, except for a modified trigger to allow the recording of events with beam leptons scattered into the CLAS12 central detector. The sign of the beam charge, as well as the polarity of the CLAS12 solenoid and toroid, will be reversed several times in order to suppress systematics associated with local detector efficiency and time-dependent detector performance. The proposed high-precision determination of two-photon effects will be...Comment: Experimental Proposal E12+23-008 submitted to Jefferson Lab PAC 51, 34 pages, 18 figure

    Search for axion-like particles through nuclear Primakoff production using the GlueX detector

    Full text link
    We report on the results of the first search for the production of axion-like particles (ALP) via Primakoff production on nuclear targets using the GlueX detector. This search uses an integrated luminosity of 100 pb1^{-1}\cdotnucleon on a 12^{12}C target, and explores the mass region of 200 < mam_a < 450 MeV via the decay XγγX\rightarrow\gamma\gamma. This mass range is between the π0\pi^0 and η\eta masses, which enables the use of the measured η\eta production rate to obtain absolute bounds on the ALP production with reduced sensitivity to experimental luminosity and detection efficiency. We find no evidence for an ALP, consistent with previous searches in the quoted mass range, and present limits on the coupling on the scale of OO(1 TeV). We further find that the ALP production limit we obtain is hindered by the peaking structure of the non-target-related dominant background in GlueX, which we treat by using data on 4^4He to estimate and subtract these backgrounds. We comment on how this search can be improved in a future higher-statistics dedicated measurement

    First Measurement of the EMC Effect in 10^{10}B and 11^{11}B

    Full text link
    The nuclear dependence of the inclusive inelastic electron scattering cross section (the EMC effect) has been measured for the first time in 10^{10}B and 11^{11}B. Previous measurements of the EMC effect in A12A \leq 12 nuclei showed an unexpected nuclear dependence; 10^{10}B and 11^{11}B were measured to explore the EMC effect in this region in more detail. Results are presented for 9^9Be, 10^{10}B, 11^{11}B, and 12^{12}C at an incident beam energy of 10.6~GeV. The EMC effect in the boron isotopes was found to be similar to that for 9^9Be and 12^{12}C, yielding almost no nuclear dependence in the EMC effect in the range A=412A=4-12. This represents important, new data supporting the hypothesis that the EMC effect depends primarily on the local nuclear environment due to the cluster structure of these nuclei.Comment: Submitted to PR

    Revealing the short-range structure of the "mirror nuclei" 3^3H and 3^3He

    Full text link
    When protons and neutrons (nucleons) are bound into atomic nuclei, they are close enough together to feel significant attraction, or repulsion, from the strong, short-distance part of the nucleon-nucleon interaction. These strong interactions lead to hard collisions between nucleons, generating pairs of highly-energetic nucleons referred to as short-range correlations (SRCs). SRCs are an important but relatively poorly understood part of nuclear structure and mapping out the strength and isospin structure (neutron-proton vs proton-proton pairs) of these virtual excitations is thus critical input for modeling a range of nuclear, particle, and astrophysics measurements. Hitherto measurements used two-nucleon knockout or ``triple-coincidence'' reactions to measure the relative contribution of np- and pp-SRCs by knocking out a proton from the SRC and detecting its partner nucleon (proton or neutron). These measurementsshow that SRCs are almost exclusively np pairs, but had limited statistics and required large model-dependent final-state interaction (FSI) corrections. We report on the first measurement using inclusive scattering from the mirror nuclei 3^3H and 3^3He to extract the np/pp ratio of SRCs in the A=3 system. We obtain a measure of the np/pp SRC ratio that is an order of magnitude more precise than previous experiments, and find a dramatic deviation from the near-total np dominance observed in heavy nuclei. This result implies an unexpected structure in the high-momentum wavefunction for 3^3He and 3^3H. Understanding these results will improve our understanding of the short-range part of the N-N interaction

    Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab

    Full text link
    This document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. With a track record of over 25 years in delivering the world's most intense and precise multi-GeV electron beams, CEBAF's potential for a higher energy upgrade presents a unique opportunity for an innovative nuclear physics program, which seamlessly integrates a rich historical background with a promising future. The proposed physics program encompass a diverse range of investigations centered around the nonperturbative dynamics inherent in hadron structure and the exploration of strongly interacting systems. It builds upon the exceptional capabilities of CEBAF in high-luminosity operations, the availability of existing or planned Hall equipment, and recent advancements in accelerator technology. The proposed program cover various scientific topics, including Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic highlights the key measurements achievable at a 22 GeV CEBAF accelerator. Furthermore, this document outlines the significant physics outcomes and unique aspects of these programs that distinguish them from other existing or planned facilities. In summary, this document provides an exciting rationale for the energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific potential that lies within reach, and the remarkable opportunities it offers for advancing our understanding of hadron physics and related fundamental phenomena.Comment: Updates to the list of authors; Preprint number changed from theory to experiment; Updates to sections 4 and 6, including additional figure
    corecore